BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 22417433)

  • 1. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells.
    Ma Q; Kim EY; Lindsay EA; Han O
    J Food Sci; 2011; 76(5):H143-50. PubMed ID: 22417433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbic acid offsets the inhibitory effect of bioactive dietary polyphenolic compounds on transepithelial iron transport in Caco-2 intestinal cells.
    Kim EY; Ham SK; Bradke D; Ma Q; Han O
    J Nutr; 2011 May; 141(5):828-34. PubMed ID: 21430251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive dietary polyphenols decrease heme iron absorption by decreasing basolateral iron release in human intestinal Caco-2 cells.
    Ma Q; Kim EY; Han O
    J Nutr; 2010 Jun; 140(6):1117-21. PubMed ID: 20375262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers.
    Kim EY; Ham SK; Shigenaga MK; Han O
    J Nutr; 2008 Sep; 138(9):1647-51. PubMed ID: 18716164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bioactive dietary polyphenols on zinc transport across the intestinal Caco-2 cell monolayers.
    Kim EY; Pai TK; Han O
    J Agric Food Chem; 2011 Apr; 59(8):3606-12. PubMed ID: 21410257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells.
    Maestre R; Douglass JD; Kodukula S; Medina I; Storch J
    J Nutr; 2013 Mar; 143(3):295-301. PubMed ID: 23325921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tea polyphenols inhibit the transport of dietary phenolic acids mediated by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers.
    Konishi Y; Kobayashi S; Shimizu M
    J Agric Food Chem; 2003 Dec; 51(25):7296-302. PubMed ID: 14640574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green tea formulations with vitamin C and xylitol on enhanced intestinal transport of green tea catechins.
    Chung JH; Kim S; Lee SJ; Chung JO; Oh YJ; Shim SM
    J Food Sci; 2013 May; 78(5):C685-90. PubMed ID: 23551173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of tea and other dietary factors on iron absorption.
    Zijp IM; Korver O; Tijburg LB
    Crit Rev Food Sci Nutr; 2000 Sep; 40(5):371-98. PubMed ID: 11029010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women.
    Cercamondi CI; Egli IM; Zeder C; Hurrell RF
    Br J Nutr; 2014 Feb; 111(3):481-9. PubMed ID: 23962728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the effect of tea polyphenols on ticagrelor by incorporating transporter-enzyme interplay mechanism.
    Liu S; Wang Z; Hou L; Tian X; Zhang X; Cai W
    Chem Biol Interact; 2020 Oct; 330():109228. PubMed ID: 32827518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of intestinal ascorbic acid uptake by lipopolysaccharide is mediated via transcriptional mechanisms.
    Subramanian VS; Sabui S; Moradi H; Marchant JS; Said HM
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):556-565. PubMed ID: 29030247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological levels of tea catechins increase cellular lipid antioxidant activity of vitamin C and vitamin E in human intestinal caco-2 cells.
    Intra J; Kuo SM
    Chem Biol Interact; 2007 Aug; 169(2):91-9. PubMed ID: 17603031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of α-glucosidases by tea polyphenols in rat intestinal extract and Caco-2 cells grown on Transwell.
    Kan L; Capuano E; Fogliano V; Verkerk R; Mes JJ; Tomassen MMM; Oliviero T
    Food Chem; 2021 Nov; 361():130047. PubMed ID: 34029903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of vitamin C and iron.
    Lynch SR; Cook JD
    Ann N Y Acad Sci; 1980; 355():32-44. PubMed ID: 6940487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe3+ opposes the 1,25(OH)2D3-induced calcium transport across intestinal epithelium-like Caco-2 monolayer in the presence or absence of ascorbic acid.
    Phummisutthigoon S; Lertsuwan K; Panupinthu N; Aeimlapa R; Teerapornpuntakit J; Chankamngoen W; Thongbunchoo J; Charoenphandhu N; Wongdee K
    PLoS One; 2022; 17(8):e0273267. PubMed ID: 36040915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary determinants of and possible solutions to iron deficiency for young women living in industrialized countries: a review.
    Beck KL; Conlon CA; Kruger R; Coad J
    Nutrients; 2014 Sep; 6(9):3747-76. PubMed ID: 25244367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of folic acid uptake by catechins and tea extracts in Caco-2 cells.
    Alemdaroglu NC; Wolffram S; Boissel JP; Closs E; Spahn-Langguth H; Langguth P
    Planta Med; 2007 Jan; 73(1):27-32. PubMed ID: 17117344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis.
    Fournier-Larente J; Morin MP; Grenier D
    Arch Oral Biol; 2016 May; 65():35-43. PubMed ID: 26849416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet.
    Friedrich M; Petzke KJ; Raederstorff D; Wolfram S; Klaus S
    Int J Obes (Lond); 2012 May; 36(5):735-43. PubMed ID: 21750518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.