BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 22417524)

  • 21. Interaction between grape-derived proanthocyanidins and cell wall material. 1. Effect on proanthocyanidin composition and molecular mass.
    Bindon KA; Smith PA; Kennedy JA
    J Agric Food Chem; 2010 Feb; 58(4):2520-8. PubMed ID: 20092254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulated digestion of proanthocyanidins in grape skin and seed extracts and the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activity.
    Fernández K; Labra J
    Food Chem; 2013 Aug; 139(1-4):196-202. PubMed ID: 23561096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extract from Sea Buckthorn Seeds-A Phytochemical, Antioxidant, and Hemostasis Study; Effect of Thermal Processing on Its Chemical Content and Biological Activity In Vitro.
    Sławińska N; Żuchowski J; Stochmal A; Olas B
    Nutrients; 2023 Jan; 15(3):. PubMed ID: 36771393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inositols and methylinositols in sea buckthorn (Hippophaë rhamnoides) berries.
    Kallio H; Lassila M; Järvenpää E; Haraldsson GG; Jonsdottir S; Yang B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 May; 877(14-15):1426-32. PubMed ID: 19345619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of different organic farming methods on the phenolic composition of sea buckthorn berries.
    Heinäaho M; Hagerman AE; Julkunen-Tiitto R
    J Agric Food Chem; 2009 Mar; 57(5):1940-7. PubMed ID: 19219991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) berries as affected by in vitro digestion.
    Guo R; Chang X; Guo X; Brennan CS; Li T; Fu X; Liu RH
    Food Funct; 2017 Nov; 8(11):4229-4240. PubMed ID: 29046908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of different organic farming methods on the concentration of phenolic compounds in sea buckthorn leaves.
    Heinäaho M; Pusenius J; Julkunen-Tiitto R
    J Agric Food Chem; 2006 Oct; 54(20):7678-85. PubMed ID: 17002439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Research progress on chemical constituents and their differences between sea buckthorn berries and leaves].
    Ran BB; Li WD
    Zhongguo Zhong Yao Za Zhi; 2019 May; 44(9):1767-1773. PubMed ID: 31342700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) Berries of Pakistani origin.
    Sabir SM; Maqsood H; Hayat I; Khan MQ; Khaliq A
    J Med Food; 2005; 8(4):518-22. PubMed ID: 16379565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-tube extraction and GC-MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica) berry varieties and juice.
    Socaci SA; Socaciu C; Tofană M; Raţi IV; Pintea A
    Phytochem Anal; 2013; 24(4):319-28. PubMed ID: 23319448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Encapsulation of sea buckthorn (Hippophae rhamnoides L.) leaf extract via an electrohydrodynamic method.
    Lyu X; Wang X; Wang Q; Ma X; Chen S; Xiao J
    Food Chem; 2021 Dec; 365():130481. PubMed ID: 34237566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.).
    Fatima T; Kesari V; Watt I; Wishart D; Todd JF; Schroeder WR; Paliyath G; Krishna P
    Phytochemistry; 2015 Oct; 118():181-91. PubMed ID: 26318327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Berry integrity and extraction of skin and seed proanthocyanidins during red wine fermentation.
    Cerpa-Calderón FK; Kennedy JA
    J Agric Food Chem; 2008 Oct; 56(19):9006-14. PubMed ID: 18788747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties.
    Pop RM; Weesepoel Y; Socaciu C; Pintea A; Vincken JP; Gruppen H
    Food Chem; 2014 Mar; 147():1-9. PubMed ID: 24206678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins.
    Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA
    J Agric Food Chem; 2005 Jul; 53(14):5798-808. PubMed ID: 15998151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Untargeted metabolic fingerprinting reveals impact of growth stage and location on composition of sea buckthorn (Hippophaë rhamnoides) leaves.
    Pariyani R; Kortesniemi M; Liimatainen J; Sinkkonen J; Yang B
    J Food Sci; 2020 Feb; 85(2):364-373. PubMed ID: 31976552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between condensed tannin structures and their ability to precipitate feed proteins in the rumen.
    Lorenz MM; Alkhafadji L; Stringano E; Nilsson S; Mueller-Harvey I; Udén P
    J Sci Food Agric; 2014 Mar; 94(5):963-8. PubMed ID: 23934572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of proanthocyanidin-rich hulls and proanthocyanidin extracts from bean (Vicia faba L.) hulls on nutrient digestibility and digestive enzyme activities in young chicks.
    Yuste P; Longstaff M; McCorquodale C
    Br J Nutr; 1992 Jan; 67(1):57-65. PubMed ID: 1547203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (
    Li Y; Li P; Yang K; He Q; Wang Y; Sun Y; He C; Xiao P
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of trypsin by condensed tannins and wine.
    Gonçalves R; Soares S; Mateus N; de Freitas V
    J Agric Food Chem; 2007 Sep; 55(18):7596-601. PubMed ID: 17696448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.