These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 22417619)
1. Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Kumar G; Waters MS; Farooque TM; Young MF; Simon CG Biomaterials; 2012 Jun; 33(16):4022-30. PubMed ID: 22417619 [TBL] [Abstract][Full Text] [Related]
2. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Kumar G; Tison CK; Chatterjee K; Pine PS; McDaniel JH; Salit ML; Young MF; Simon CG Biomaterials; 2011 Dec; 32(35):9188-96. PubMed ID: 21890197 [TBL] [Abstract][Full Text] [Related]
3. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells]. Xu Y; Wei B; Zhou J; Yao Q; Wang L; Na J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Feb; 32(2):215-222. PubMed ID: 29806415 [TBL] [Abstract][Full Text] [Related]
4. Early time-point cell morphology classifiers successfully predict human bone marrow stromal cell differentiation modulated by fiber density in nanofiber scaffolds. Chen D; Dunkers JP; Losert W; Sarkar S Biomaterials; 2021 Jul; 274():120812. PubMed ID: 33962216 [TBL] [Abstract][Full Text] [Related]
5. Optimization of electrospray fabrication of stem cell-embedded alginate-gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering. Xu Y; Peng J; Richards G; Lu S; Eglin D J Orthop Translat; 2019 Jul; 18():128-141. PubMed ID: 31508316 [TBL] [Abstract][Full Text] [Related]
7. Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Kang Y; Kim S; Fahrenholtz M; Khademhosseini A; Yang Y Acta Biomater; 2013 Jan; 9(1):4906-15. PubMed ID: 22902820 [TBL] [Abstract][Full Text] [Related]
8. The osteogenic differentiation of human bone marrow stromal cells induced by nanofiber scaffolds using bioinformatics. Zhang Z; Gong L; Li M; Wei G; Liu Y Biochim Biophys Acta Mol Basis Dis; 2021 Dec; 1867(12):166245. PubMed ID: 34391896 [TBL] [Abstract][Full Text] [Related]
9. Microscale roughness regulates laminin-5 secretion of bone marrow mesenchymal stem cells. Zou J; Wang W; Nie Y; Xu X; Ma N; Lendlein A Clin Hemorheol Microcirc; 2019; 73(1):237-247. PubMed ID: 31561334 [TBL] [Abstract][Full Text] [Related]
10. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Tutak W; Sarkar S; Lin-Gibson S; Farooque TM; Jyotsnendu G; Wang D; Kohn J; Bolikal D; Simon CG Biomaterials; 2013 Mar; 34(10):2389-98. PubMed ID: 23312903 [TBL] [Abstract][Full Text] [Related]
11. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair. Wang L; Zhang C; Li C; Weir MD; Wang P; Reynolds MA; Zhao L; Xu HH Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1125-36. PubMed ID: 27612810 [TBL] [Abstract][Full Text] [Related]
12. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Wu C; Zhou Y; Chang J; Xiao Y Acta Biomater; 2013 Nov; 9(11):9159-68. PubMed ID: 23811216 [TBL] [Abstract][Full Text] [Related]
13. Synergetic effects of hBMSCs and hPCs in osteogenic differentiation and their capacity in the repair of critical-sized femoral condyle defects. Chen D; Shen H; He Y; Chen Y; Wang Q; Lu J; Jiang Y Mol Med Rep; 2015 Feb; 11(2):1111-9. PubMed ID: 25373389 [TBL] [Abstract][Full Text] [Related]
14. Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds. Rentsch C; Hess R; Rentsch B; Hofmann A; Manthey S; Scharnweber D; Biewener A; Zwipp H In Vitro Cell Dev Biol Anim; 2010 Jul; 46(7):624-34. PubMed ID: 20490706 [TBL] [Abstract][Full Text] [Related]
15. Nanofiber scaffolds influence organelle structure and function in bone marrow stromal cells. Tutak W; Jyotsnendu G; Bajcsy P; Simon CG J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):989-1001. PubMed ID: 26888543 [TBL] [Abstract][Full Text] [Related]
16. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure. Bernhardt A; Despang F; Lode A; Demmler A; Hanke T; Gelinsky M J Tissue Eng Regen Med; 2009 Jan; 3(1):54-62. PubMed ID: 19012272 [TBL] [Abstract][Full Text] [Related]
17. Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects. Chen W; Liu J; Manuchehrabadi N; Weir MD; Zhu Z; Xu HH Biomaterials; 2013 Dec; 34(38):9917-25. PubMed ID: 24054499 [TBL] [Abstract][Full Text] [Related]
18. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells. Yang W; Han W; He W; Li J; Wang J; Feng H; Qian Y Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():45-53. PubMed ID: 26706505 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique. Koroleva A; Deiwick A; Nguyen A; Schlie-Wolter S; Narayan R; Timashev P; Popov V; Bagratashvili V; Chichkov B PLoS One; 2015; 10(2):e0118164. PubMed ID: 25706270 [TBL] [Abstract][Full Text] [Related]