These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22417792)

  • 1. Leading edge vortex in a slow-flying passerine.
    Muijres FT; Johansson LC; Hedenström A
    Biol Lett; 2012 Aug; 8(4):554-7. PubMed ID: 22417792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna).
    Wolf M; Ortega-Jimenez VM; Dudley R
    Proc Biol Sci; 2013 Dec; 280(1773):20132391. PubMed ID: 24174113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lift production in the hovering hummingbird.
    Warrick DR; Tobalske BW; Powers DR
    Proc Biol Sci; 2009 Nov; 276(1674):3747-52. PubMed ID: 19656789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hovering and intermittent flight in birds.
    Tobalske BW
    Bioinspir Biomim; 2010 Dec; 5(4):045004. PubMed ID: 21098953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
    Lee YJ; Lua KB
    Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of hover performance in Neotropical hummingbirds versus bats.
    Ingersoll R; Haizmann L; Lentink D
    Sci Adv; 2018 Sep; 4(9):eaat2980. PubMed ID: 30263957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leading-edge vortex improves lift in slow-flying bats.
    Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A
    Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The novel aerodynamics of insect flight: applications to micro-air vehicles.
    Ellington CP
    J Exp Biol; 1999 Dec; 202(Pt 23):3439-48. PubMed ID: 10562527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple leading edge vortices of unexpected strength in freely flying hawkmoth.
    Johansson LC; Engel S; Kelber A; Heerenbrink MK; Hedenström A
    Sci Rep; 2013 Nov; 3():3264. PubMed ID: 24253180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How the hummingbird wingbeat is tuned for efficient hovering.
    Ingersoll R; Lentink D
    J Exp Biol; 2018 Oct; 221(Pt 20):. PubMed ID: 30323114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.
    Gutierrez E; Quinn DB; Chin DD; Lentink D
    Bioinspir Biomim; 2016 Dec; 12(1):016004. PubMed ID: 27921999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational investigation of cicada aerodynamics in forward flight.
    Wan H; Dong H; Gai K
    J R Soc Interface; 2015 Jan; 12(102):20141116. PubMed ID: 25551136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
    Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A
    PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles.
    Johansson LC; Engel S; Baird E; Dacke M; Muijres FT; Hedenström A
    J R Soc Interface; 2012 Oct; 9(75):2745-8. PubMed ID: 22593097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.