These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 22417810)

  • 1. Rectification of terahertz radiation in semiconductor superlattices in the absence of domains.
    Isohätälä J; Alekseev KN
    J Phys Condens Matter; 2012 Apr; 24(14):145303. PubMed ID: 22417810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field.
    Wang C; Wang F; Cao JC
    Chaos; 2014 Sep; 24(3):033109. PubMed ID: 25273189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz conductivity and possible BLOCH gain in semiconductor superlattices.
    Shimada Y; Hirakawa K; Odnoblioudov M; Chao KA
    Phys Rev Lett; 2003 Jan; 90(4):046806. PubMed ID: 12570445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute negative conductivity and spontaneous current generation in semiconductor superlattices with hot electrons.
    Cannon EH; Kusmartsev FV; Alekseev KN; Campbell DK
    Phys Rev Lett; 2000 Aug; 85(6):1302-5. PubMed ID: 10991537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zener tunneling in semiconductor superlattices.
    Romanova JY; Demidov EV; Mourokh LG; Romanov YA
    J Phys Condens Matter; 2011 Aug; 23(30):305801. PubMed ID: 21747156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Output from a Josephson stimulated terahertz amplified radiation emitter.
    Klemm RA; Kadowaki K
    J Phys Condens Matter; 2010 Sep; 22(37):375701. PubMed ID: 21403205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior.
    Strukov DB; Borghetti JL; Williams RS
    Small; 2009 May; 5(9):1058-63. PubMed ID: 19226597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current oscillation and chaotic dynamics in superlattices driven by crossed electric and magnetic fields.
    Wang C; Cao JC
    Chaos; 2005 Mar; 15(1):13111. PubMed ID: 15836265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral investigation of hot spot and cavity resonance effects on the terahertz radiation from high-T(c) superconducting Bi2Sr2CaCu2O(8+δ) mesas.
    Watanabe C; Minami H; Yamamoto T; Kashiwagi T; Klemm RA; Kadowaki K
    J Phys Condens Matter; 2014 Apr; 26(17):172201. PubMed ID: 24713543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the momentum relaxation time of charge carriers in ultrathin layers with terahertz radiation.
    Funk S; Acuna G; Handloser M; Kersting R
    Opt Express; 2009 Sep; 17(20):17450-6. PubMed ID: 19907529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz generation and chaotic dynamics in single-walled zigzag carbon nanotubes.
    Wang C; Cao JC
    Chaos; 2009 Sep; 19(3):033136. PubMed ID: 19792016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Analysis of Terahertz Frequency Multiplier Based on Semiconductor Superlattices.
    Feng W; Wei S; Zheng Y; Wang C; Cao J
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz ionization of highly charged quantum posts in a perforated electron gas.
    Morris CM; Stehr D; Kim H; Truong TA; Pryor C; Petroff PM; Sherwin MS
    Nano Lett; 2012 Mar; 12(3):1115-20. PubMed ID: 21517124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz meta-atoms coupled to a quantum well intersubband transition.
    Dietze D; Benz A; Strasser G; Unterrainer K; Darmo J
    Opt Express; 2011 Jul; 19(14):13700-6. PubMed ID: 21747526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice.
    Yin Z; Song H; Zhang Y; Ruiz-García M; Carretero M; Bonilla LL; Biermann K; Grahn HT
    Phys Rev E; 2017 Jan; 95(1-1):012218. PubMed ID: 28208354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic scenarios of multistable switching in semiconductor superlattices.
    Amann A; Wacker A; Bonilla LL; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066207. PubMed ID: 11415206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of parametric amplification in superlattices.
    Hyart T; Shorokhov AV; Alekseev KN
    Phys Rev Lett; 2007 Jun; 98(22):220404. PubMed ID: 17677823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of magnetic field on electromagnetic instabilities in semiconductor superlattices.
    Tarkhanyan RH; Nassiopoulou AG
    J Nanosci Nanotechnol; 2004 Nov; 4(8):1085-94. PubMed ID: 15656208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the dielectric substrate on the terahertz electric near-field of a hole in a metal.
    Guestin L; Adam AJ; Knab JR; Nagel M; Planken PC
    Opt Express; 2009 Sep; 17(20):17412-25. PubMed ID: 19907526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators.
    Berrier A; Albella P; Poyli MA; Ulbricht R; Bonn M; Aizpurua J; Rivas JG
    Opt Express; 2012 Feb; 20(5):5052-60. PubMed ID: 22418310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.