BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 22418080)

  • 1. Development of a process for the production of L-amino-acids concentrates from microalgae by enzymatic hydrolysis.
    Romero García JM; Acién Fernández FG; Fernández Sevilla JM
    Bioresour Technol; 2012 May; 112():164-70. PubMed ID: 22418080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical optimization of thermal pretreatment conditions for enhanced biomethane production from defatted algal biomass.
    Chandra TS; Suvidha G; Mukherji S; Chauhan VS; Vidyashankar S; Krishnamurthi K; Sarada R; Mudliar SN
    Bioresour Technol; 2014 Jun; 162():157-65. PubMed ID: 24747395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic cell disruption of microalgae biomass in biorefinery processes.
    Demuez M; Mahdy A; Tomás-Pejó E; González-Fernández C; Ballesteros M
    Biotechnol Bioeng; 2015 Oct; 112(10):1955-66. PubMed ID: 25976593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production.
    Choi SP; Nguyen MT; Sim SJ
    Bioresour Technol; 2010 Jul; 101(14):5330-6. PubMed ID: 20219355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production.
    Pancha I; Chokshi K; Maurya R; Bhattacharya S; Bachani P; Mishra S
    Bioresour Technol; 2016 Mar; 204():9-16. PubMed ID: 26771924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption of cadmium by CO(2)-fixing microalga Scenedesmus obliquus CNW-N.
    Chen CY; Chang HW; Kao PC; Pan JL; Chang JS
    Bioresour Technol; 2012 Feb; 105():74-80. PubMed ID: 22178497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement effect of ethyl-2-methyl acetoacetate on triacylglycerols production by a freshwater microalga, Scenedesmus sp. LX1.
    Xin L; Hong-Ying H; Jia Y; Yin-Hu W
    Bioresour Technol; 2010 Dec; 101(24):9819-21. PubMed ID: 20716483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N.
    Ho SH; Li PJ; Liu CC; Chang JS
    Bioresour Technol; 2013 Oct; 145():142-9. PubMed ID: 23566474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell disruption for microalgae biorefineries.
    Günerken E; D'Hondt E; Eppink MH; Garcia-Gonzalez L; Elst K; Wijffels RH
    Biotechnol Adv; 2015; 33(2):243-60. PubMed ID: 25656098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production.
    Miranda JR; Passarinho PC; Gouveia L
    Bioresour Technol; 2012 Jan; 104():342-8. PubMed ID: 22093974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algicidal microorganisms and secreted algicides: New tools to induce microalgal cell disruption.
    Demuez M; González-Fernández C; Ballesteros M
    Biotechnol Adv; 2015 Dec; 33(8):1615-25. PubMed ID: 26303095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass.
    Cerón MC; Campos I; Sánchez JF; Acién FG; Molina E; Fernández-Sevilla JM
    J Agric Food Chem; 2008 Dec; 56(24):11761-6. PubMed ID: 19049289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus.
    Mata TM; Melo AC; Simões M; Caetano NS
    Bioresour Technol; 2012 Mar; 107():151-8. PubMed ID: 22244957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.
    Ometto F; Quiroga G; Pšenička P; Whitton R; Jefferson B; Villa R
    Water Res; 2014 Nov; 65():350-61. PubMed ID: 25150520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation.
    Salim S; Vermuë MH; Wijffels RH
    Bioresour Technol; 2012 Aug; 118():49-55. PubMed ID: 22695146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.
    Pancha I; Chokshi K; Maurya R; Trivedi K; Patidar SK; Ghosh A; Mishra S
    Bioresour Technol; 2015; 189():341-348. PubMed ID: 25911594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept.
    Mussgnug JH; Klassen V; Schlüter A; Kruse O
    J Biotechnol; 2010 Oct; 150(1):51-6. PubMed ID: 20691224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave pyrolysis of microalgae for high syngas production.
    Beneroso D; Bermúdez JM; Arenillas A; Menéndez JA
    Bioresour Technol; 2013 Sep; 144():240-6. PubMed ID: 23871926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.