These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22418105)

  • 1. Broadband dispersion compensation using inner cladding modes in photonic crystal fibers.
    Beltrán-Mejía F; Cordeiro CM; Andrés P; Silvestre E
    Opt Express; 2012 Feb; 20(4):3467-72. PubMed ID: 22418105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation.
    Fujisawa T; Saitoh K; Wada K; Koshiba M
    Opt Express; 2006 Jan; 14(2):893-900. PubMed ID: 19503409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband dispersion-compensating photonic crystal fiber.
    Yang S; Zhang Y; He L; Xie S
    Opt Lett; 2006 Oct; 31(19):2830-2. PubMed ID: 16969392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic crystal fiber for dispersion compensation.
    Zhao X; Zhou G; Li S; Liu Z; Wei D; Hou Z; Hou L
    Appl Opt; 2008 Oct; 47(28):5190-6. PubMed ID: 18830310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of nonlinear photonic crystal fibers with a double-cladded coaxial core for zero chromatic dispersion.
    Kim J
    Appl Opt; 2012 Oct; 51(28):6896-900. PubMed ID: 23033108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion.
    Kim SE; Kim BH; Lee CG; Lee S; Oh K; Kee CS
    Opt Express; 2012 Jan; 20(2):1385-91. PubMed ID: 22274483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sandwiched photonic crystal fiber for dispersion compensation over the S + C + L + U wavelength bands.
    Sun W; Qu Y; Cao J; Jia H
    Appl Opt; 2021 Jun; 60(18):5399-5404. PubMed ID: 34263779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of optical tips from photonic crystal fibers.
    Carlson CA; Woehl JC
    Rev Sci Instrum; 2008 Oct; 79(10):103707. PubMed ID: 19044719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses.
    Saitoh K; Florous N; Koshiba M
    Opt Express; 2005 Oct; 13(21):8365-71. PubMed ID: 19498866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window.
    Saitoh K; Koshiba M
    Opt Express; 2004 May; 12(10):2027-32. PubMed ID: 19475038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion flattening in a W fiber.
    Lundin R
    Appl Opt; 1994 Feb; 33(6):1011-4. PubMed ID: 20862108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbative and phase-transition-type modification of mode field profiles and dispersion of photonic-crystal fibers by arrays of nanosize air-hole defects.
    Li YF; Hu ML; Wang CY; Zheltikov AM
    Opt Express; 2006 Oct; 14(22):10878-86. PubMed ID: 19529500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical comparison between conventional dispersion compensating fibers and photonic crystal fibers as lumped Raman amplifiers.
    Castellani CE; Cani SP; Segatto ME; Pontes MJ; Romero MA
    Opt Express; 2009 Dec; 17(25):23169-80. PubMed ID: 20052245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers.
    Coscelli E; Poli F; Alkeskjold TT; Passaro D; Cucinotta A; Leick L; Broeng J; Selleri S
    Opt Express; 2010 Dec; 18(26):27197-204. PubMed ID: 21196997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersion control in square lattice photonic crystal fiber using hollow ring defects.
    Park J; Lee S; Lee S; Kim SE; Oh K
    Opt Express; 2012 Feb; 20(5):5281-90. PubMed ID: 22418334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission over large-core few-mode photonic crystal fiber using distance-independent modal dispersion compensation technique.
    Sakamoto T; Mori T; Yamamoto T; Ma L; Hanzawa N; Aozasa S; Tsujikawa K; Tomita S
    Opt Express; 2011 Dec; 19(26):B478-85. PubMed ID: 22274059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of birefringent and dispersive properties of photonic crystal fibers.
    Lu S; Li W; Guo H; Lu M
    Appl Opt; 2011 Oct; 50(30):5798-802. PubMed ID: 22015407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band.
    Sasaki K; Varshney SK; Wada K; Saitoh K; Koshiba M
    Opt Express; 2007 Mar; 15(5):2654-68. PubMed ID: 19532502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-solid highly nonlinear singlemode fibers with a tailored dispersion profile.
    Poletti F; Feng X; Ponzo GM; Petrovich MN; Loh WH; Richardson DJ
    Opt Express; 2011 Jan; 19(1):66-80. PubMed ID: 21263543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber.
    Gérôme F; Auguste JL; Blondy JM
    Opt Lett; 2004 Dec; 29(23):2725-7. PubMed ID: 15605485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.