These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22418105)

  • 21. Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings.
    He Z; Zhu Y; Kanka J; Du H
    Opt Express; 2010 Jan; 18(2):507-12. PubMed ID: 20173870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analyses of cladding modes in photonic crystal fiber.
    Park HC; Hwang IK; Yeom DI; Kim BY
    Opt Express; 2007 Nov; 15(23):15154-60. PubMed ID: 19550798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers.
    Hartung A; Heidt AM; Bartelt H
    Opt Express; 2011 Jun; 19(13):12275-83. PubMed ID: 21716464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field.
    Yang S; Zhang Y; Peng X; Lu Y; Xie S; Li J; Chen W; Jiang Z; Peng J; Li H
    Opt Express; 2006 Apr; 14(7):3015-23. PubMed ID: 19516441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability.
    Wong GK; Chen AY; Ha S; Kruhlak R; Murdoch S; Leonhardt R; Harvey J; Joly N
    Opt Express; 2005 Oct; 13(21):8662-70. PubMed ID: 19498897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands.
    Hasan MR; Hasan MI; Anower MS
    Appl Opt; 2015 Nov; 54(32):9456-61. PubMed ID: 26560773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of microstructured optical fibers for wideband dispersion compensation.
    Poli F; Cucinotta A; Fuochi M; Selleri S; Vincetti L
    J Opt Soc Am A Opt Image Sci Vis; 2003 Oct; 20(10):1958-62. PubMed ID: 14570109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss.
    Wang Y; Zhang X; Ren X; Zheng L; Liu X; Huang Y
    Appl Opt; 2010 Jan; 49(3):292-7. PubMed ID: 20090791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers.
    Saitoh K; Koshiba M
    Opt Express; 2003 Nov; 11(23):3100-9. PubMed ID: 19471432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Broadband ultra-flattened dispersion, ultra-low confinement loss and large effective mode area in an octagonal photonic quasi-crystal fiber.
    Liu E; Tan W; Yan B; Xie J; Ge R; Liu J
    J Opt Soc Am A Opt Image Sci Vis; 2018 Mar; 35(3):431-436. PubMed ID: 29522045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cylinder gratings in conical incidence with applications to modes of air-cored photonic crystal fibers.
    Smith GH; Botten LC; McPhedran RC; Nicorovici NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056604. PubMed ID: 12513620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber.
    Heidt AM; Rothhardt J; Hartung A; Bartelt H; Rohwer EG; Limpert J; Tünnermann A
    Opt Express; 2011 Jul; 19(15):13873-9. PubMed ID: 21934748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis and optimization of a dual-core dispersion compensation fiber based on a 12-fold photonic quasicrystal structure.
    Matloub S; Hosseini SM; Rostami A
    Appl Opt; 2014 Dec; 53(35):8366-73. PubMed ID: 25608082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatic dispersion measurement along both polarization directions of a birefringent hollow-core photonic crystal fiber using spectral interferometry.
    Grósz T; Kovács AP; Varjú K
    Appl Opt; 2017 Jul; 56(19):5369-5376. PubMed ID: 29047493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber.
    Wang YY; Wheeler NV; Couny F; Roberts PJ; Benabid F
    Opt Lett; 2011 Mar; 36(5):669-71. PubMed ID: 21368943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cut-off analysis of 19-cell Yb-doped double-cladding rod-type photonic crystal fibers.
    Poli F; Coscelli E; Alkeskjold TT; Passaro D; Cucinotta A; Leick L; Broeng J; Selleri S
    Opt Express; 2011 May; 19(10):9896-907. PubMed ID: 21643246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss analysis of air-core photonic crystal fibers.
    Xu Y; Yariv A
    Opt Lett; 2003 Oct; 28(20):1885-7. PubMed ID: 14587764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and optimization of highly nonlinear low-dispersion crystal fiber with high birefringence for four-wave mixing.
    Zhang YN; Ren LY; Gong YK; Li XH; Wang LR; Sun CD
    Appl Opt; 2010 Jun; 49(16):3208-14. PubMed ID: 20517392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers.
    Digonnet M; Kim H; Shin J; Fan S; Kino G
    Opt Express; 2004 May; 12(9):1864-72. PubMed ID: 19475017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Bloch-modes in hollow-core photonic crystal fiber cladding.
    Couny F; Benabid F; Roberts PJ; Burnett MT; Maier SA
    Opt Express; 2007 Jan; 15(2):325-38. PubMed ID: 19532248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.