These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 22418191)

  • 1. 3-D integrated heterogeneous intra-chip free-space optical interconnect.
    Ciftcioglu B; Berman R; Wang S; Hu J; Savidis I; Jain M; Moore D; Huang M; Friedman EG; Wicks G; Wu H
    Opt Express; 2012 Feb; 20(4):4331-45. PubMed ID: 22418191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays.
    Wang R; Rakić AD; Majewski ML
    Appl Opt; 2002 Jun; 41(17):3469-78. PubMed ID: 12074519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate.
    Urino Y; Shimizu T; Okano M; Hatori N; Ishizaka M; Yamamoto T; Baba T; Akagawa T; Akiyama S; Usuki T; Okamoto D; Miura M; Noguchi M; Fujikata J; Shimura D; Okayama H; Tsuchizawa T; Watanabe T; Yamada K; Itabashi S; Saito E; Nakamura T; Arakawa Y
    Opt Express; 2011 Dec; 19(26):B159-65. PubMed ID: 22274013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects.
    Li Y; Wang T; Linke RA
    Appl Opt; 1996 Mar; 35(8):1282-95. PubMed ID: 21085241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors.
    Haney MW; Christensen MP; Milojkovic P; Ekman J; Chandramani P; Rozier R; Kiamilev F; Liu Y; Hibbs-Brenner M
    Appl Opt; 1999 Oct; 38(29):6190-200. PubMed ID: 18324143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel reconfigurable optical interconnect architecture using an Opto-VLSI processor and a 4-f imaging system.
    Shen M; Xiao F; Alameh K
    Opt Express; 2009 Dec; 17(25):22680-8. PubMed ID: 20052194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Si
    Hu X; Girardi M; Ye Z; Muñoz P; Larsson A; Torres-Company V
    Opt Express; 2020 Apr; 28(9):13019-13031. PubMed ID: 32403784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed characteristics of vertical cavity surface emitting lasers and resonant-cavity-enhanced photodetectors based on intracavity-contacted structure.
    Song YM; Jeong BK; Na BH; Chang KS; Yu JS; Lee YT
    Appl Opt; 2009 Sep; 48(25):F11-7. PubMed ID: 19724307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s.
    Kim G; Park JW; Kim IG; Kim S; Kim S; Lee JM; Park GS; Joo J; Jang KS; Oh JH; Kim SA; Kim JH; Lee JY; Park JM; Kim DW; Jeong DK; Hwang MS; Kim JK; Park KS; Chi HK; Kim HC; Kim DW; Cho MH
    Opt Express; 2011 Dec; 19(27):26936-47. PubMed ID: 22274277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential characterization of free-space-wave drop demultiplexer using cavity-resonator-integrated grating input/output coupler.
    Kintaka K; Shimizu K; Kita Y; Kawanami S; Inoue J; Ura S; Nishii J
    Opt Express; 2010 Nov; 18(24):25108-15. PubMed ID: 21164857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Interconnects Finally Seeing the Light in Silicon Photonics: Past the Hype.
    Mekawey H; Elsayed M; Ismail Y; Swillam MA
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WDM-compatible mode-division multiplexing on a silicon chip.
    Luo LW; Ophir N; Chen CP; Gabrielli LH; Poitras CB; Bergmen K; Lipson M
    Nat Commun; 2014; 5():3069. PubMed ID: 24423882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-space optical mesh-connected bus networks using wavelength-division multiple access.
    Li Y; Lohmann AW; Rao SB
    Appl Opt; 1993 Nov; 32(32):6425-37. PubMed ID: 20856480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss analysis for a two wire optical waveguide for chip-to-chip communication.
    Dickason J; Goossen KW
    Opt Express; 2013 Mar; 21(5):5226-31. PubMed ID: 23482093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichip module with planar-integrated free-space optical vector-matrix-type interconnects.
    Gruber M
    Appl Opt; 2004 Jan; 43(2):463-70. PubMed ID: 14735965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission.
    Kao HY; Tsai CT; Leong SF; Peng CY; Chi YC; Huang JJ; Kuo HC; Shih TT; Jou JJ; Cheng WH; Wu CH; Lin GR
    Opt Express; 2017 Jul; 25(14):16347-16363. PubMed ID: 28789140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems.
    Kajita M; Kasahara K; Kim TJ; Neilson DT; Ogura I; Redmond I; Schenfeld E
    Appl Opt; 1998 Jun; 37(17):3746-55. PubMed ID: 18273346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 650-nm vertical-cavity surface-emitting lasers (VCSELs) for plastic optical fiber communication.
    Almaymoni N; Alkhazragi O; Kang CH; Melinte G; Ng TK; Ooi BS
    Opt Express; 2023 Dec; 31(25):41361-41373. PubMed ID: 38087537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical interconnects using top-surface-emitting microlasers and planar optics.
    Jahns J; Lee YH; Burrus CA; Jewell JL
    Appl Opt; 1992 Feb; 31(5):592-7. PubMed ID: 20720653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-optical resonance modulation of vertical-cavity surface-emitting lasers.
    Germann TD; Hofmann W; Nadtochiy AM; Schulze JH; Mutig A; Strittmatter A; Bimberg D
    Opt Express; 2012 Feb; 20(5):5099-107. PubMed ID: 22418315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.