BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 22418264)

  • 1. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids.
    Rudolf C; Grammel H
    Enzyme Microb Technol; 2012 Apr; 50(4-5):238-46. PubMed ID: 22418264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based high cell density cultivation of Rhodospirillum rubrum under respiratory dark conditions.
    Zeiger L; Grammel H
    Biotechnol Bioeng; 2010 Mar; 105(4):729-39. PubMed ID: 19882736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microaerophilic cooperation of reductive and oxidative pathways allows maximal photosynthetic membrane biosynthesis in Rhodospirillum rubrum.
    Grammel H; Gilles ED; Ghosh R
    Appl Environ Microbiol; 2003 Nov; 69(11):6577-86. PubMed ID: 14602616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise reduction of the culture redox potential allows the analysis of microaerobic metabolism and photosynthetic membrane synthesis in Rhodospirillum rubrum.
    Carius L; Hädicke O; Grammel H
    Biotechnol Bioeng; 2013 Feb; 110(2):573-85. PubMed ID: 23042159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quorum sensing influences growth and photosynthetic membrane production in high-cell-density cultivations of Rhodospirillum rubrum.
    Carius L; Carius AB; McIntosh M; Grammel H
    BMC Microbiol; 2013 Aug; 13():189. PubMed ID: 23927486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata.
    Schultz JE; Weaver PF
    J Bacteriol; 1982 Jan; 149(1):181-90. PubMed ID: 6798016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Substrate utilization and bacteriochlorophyll synthesis by Rhodospirillum rubrum under anaerobic conditions in the dark. I. Dependence of bacteriochlorophyl synthesis on substrate concentration and electron acceptor].
    Schön G
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):380-6. PubMed ID: 4145604
    [No Abstract]   [Full Text] [Related]  

  • 9. [Synthesis of volatile acids by fermentation of pyruvate and fructose in anaerobic dark cultures of Rhodospirillum rubrum].
    Schön G; Biedermann M
    Arch Mikrobiol; 1972; 85(1):77-90. PubMed ID: 4627360
    [No Abstract]   [Full Text] [Related]  

  • 10. Novel substrate (algal protein) for cultivation of Rhodospirillum rubrum.
    Vatsala TM; Rekha R; Srividhya R
    Indian J Exp Biol; 2011 Oct; 49(10):773-80. PubMed ID: 22013744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic-anaerobic transition boosts poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in Rhodospirillum rubrum: the key role of carbon dioxide.
    Godoy MS; de Miguel SR; Prieto MA
    Microb Cell Fact; 2023 Mar; 22(1):47. PubMed ID: 36899367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propionate formation in Rhodospirillum rubrum under anaerobic dark conditions.
    Voelskow H; Schön G
    Z Allg Mikrobiol; 1981; 21(7):545-53. PubMed ID: 6798770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reaction center H subunit is not required for high levels of light-harvesting complex 1 in Rhodospirillum rubrum mutants.
    Lupo D; Ghosh R
    J Bacteriol; 2004 Sep; 186(17):5585-95. PubMed ID: 15317762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and adaptive hydrogen production of Rhodospirillum rubrum (F 1 ) in anaerobic dark cultures.
    Schön G; Biedermann M
    Biochim Biophys Acta; 1973 Mar; 304(1):65-75. PubMed ID: 4633594
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum.
    North JA; Sriram J; Chourey K; Ecker CD; Sharma R; Wildenthal JA; Hettich RL; Tabita FR
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diazotrophic growth of Rhodospirillum rubrum with 2-oxoglutarate as sole carbon source affects regulation of nitrogen metabolism as well as the soluble proteome.
    Teixeira PF; Selao TT; Henriksson V; Wang H; Norén A; Nordlund S
    Res Microbiol; 2010 Oct; 161(8):651-9. PubMed ID: 20600859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive tricarboxylic acid cycle enzymes and reductive amino acid synthesis pathways contribute to electron balance in a
    McCully AL; Onyeziri MC; LaSarre B; Gliessman JR; McKinlay JB
    Microbiology (Reading); 2020 Feb; 166(2):199-211. PubMed ID: 31774392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodospirillum rubrum: utilization of condensed corn solubles for poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) production.
    Smith RL; West TP; Gibbons WR
    J Appl Microbiol; 2008 May; 104(5):1488-94. PubMed ID: 18179537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of soluble and membrane-bound inorganic pyrophosphatases in the photosynthetic bacterium Rhodospirillum rubrum provides insights into pyrophosphate-based stress bioenergetics.
    López-Marqués RL; Pérez-Castiñeira JR; Losada M; Serrano A
    J Bacteriol; 2004 Aug; 186(16):5418-26. PubMed ID: 15292143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.