These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 22418468)
1. Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method. Chiu CC; Lee YC Opt Express; 2012 Mar; 20(6):5922-35. PubMed ID: 22418468 [TBL] [Abstract][Full Text] [Related]
2. A high numerical aperture, polymer-based, planar microlens array. Tripathi A; Chokshi TV; Chronis N Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214 [TBL] [Abstract][Full Text] [Related]
3. A new method for fabricating high density and large aperture ratio liquid microlens array. Ren H; Ren D; Wu ST Opt Express; 2009 Dec; 17(26):24183-8. PubMed ID: 20052129 [TBL] [Abstract][Full Text] [Related]
4. Microlens fabrication using an excimer laser and the diaphragm method. Chen T; Wang T; Wang Z; Zuo T; Wu J; Liu S Opt Express; 2009 Jun; 17(12):9733-47. PubMed ID: 19506623 [TBL] [Abstract][Full Text] [Related]
5. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic. Hung KY; Fan CC; Tseng FG; Chen YK Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621 [TBL] [Abstract][Full Text] [Related]
6. A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array. Schonbrun E; Steinvurzel PE; Crozier KB Opt Express; 2011 Jan; 19(2):1385-94. PubMed ID: 21263680 [TBL] [Abstract][Full Text] [Related]
7. Formation of micro protrusive lens arrays atop poly(methyl methacrylate). Zhao Y; Wang CC; Huang WM; Purnawali H; An L Opt Express; 2011 Dec; 19(27):26000-5. PubMed ID: 22274188 [TBL] [Abstract][Full Text] [Related]
8. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Chen F; Liu H; Yang Q; Wang X; Hou C; Bian H; Liang W; Si J; Hou X Opt Express; 2010 Sep; 18(19):20334-43. PubMed ID: 20940925 [TBL] [Abstract][Full Text] [Related]
10. Development of a 3D artificial compound eye. Li L; Yi AY Opt Express; 2010 Aug; 18(17):18125-37. PubMed ID: 20721201 [TBL] [Abstract][Full Text] [Related]
11. The fabrication of aspherical microlenses using focused ion-beam techniques. Langridge MT; Cox DC; Webb RP; Stolojan V Micron; 2014 Feb; 57():56-66. PubMed ID: 24239415 [TBL] [Abstract][Full Text] [Related]
12. Brightness field distributions of microlens arrays using micro molding. Cheng HC; Huang CF; Lin Y; Shen YK Opt Express; 2010 Dec; 18(26):26887-904. PubMed ID: 21196966 [TBL] [Abstract][Full Text] [Related]
13. Beam pen lithography based on focused laser diode beam with single microlens fabricated by excimer laser. Hasan MN; Lee YC Opt Express; 2015 Feb; 23(4):4494-505. PubMed ID: 25836486 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes. Li X; Ding Y; Shao J; Liu H; Tian H Opt Lett; 2011 Oct; 36(20):4083-5. PubMed ID: 22002393 [TBL] [Abstract][Full Text] [Related]
15. Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate. Wu D; Niu LG; Wu SZ; Xu J; Midorikawa K; Sugioka K Lab Chip; 2015 Mar; 15(6):1515-23. PubMed ID: 25622687 [TBL] [Abstract][Full Text] [Related]
16. Femtosecond laser and arc discharge induced microstructuring on optical fiber tip for the multidirectional firing. Sohn IB; Kim Y; Noh YC; Lee IW; Kim JK; Lee H Opt Express; 2010 Sep; 18(19):19755-60. PubMed ID: 20940870 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of microlens arrays based on the mass transport effect of SU-8 photoresist using a multiexposure two-beam interference technique. Wu CY; Chiang TH; Lai ND; Do DB; Hsu CC Appl Opt; 2009 May; 48(13):2473-9. PubMed ID: 19412205 [TBL] [Abstract][Full Text] [Related]