These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22418664)

  • 1. Electromagnetic simulations of a photonic luminescent solar concentrator.
    Gutmann J; Peters M; Bläsi B; Hermle M; Gombert A; Zappe H; Goldschmidt JC
    Opt Express; 2012 Mar; 20 Suppl 2():A157-67. PubMed ID: 22418664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators.
    Banal JL; Zhang B; Jones DJ; Ghiggino KP; Wong WW
    Acc Chem Res; 2017 Jan; 50(1):49-57. PubMed ID: 27992172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and reduction of reabsorption losses in luminescent solar concentrators.
    Wilson LR; Rowan BC; Robertson N; Moudam O; Jones AC; Richards BS
    Appl Opt; 2010 Mar; 49(9):1651-61. PubMed ID: 20300163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals.
    Jiménez-Solano A; Delgado-Sánchez JM; Calvo ME; Miranda-Muñoz JM; Lozano G; Sancho D; Sánchez-Cortezón E; Míguez H
    Prog Photovolt; 2015 Dec; 23(12):1785-1792. PubMed ID: 27656090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency.
    Desmet L; Ras AJ; de Boer DK; Debije MG
    Opt Lett; 2012 Aug; 37(15):3087-9. PubMed ID: 22859094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greener Luminescent Solar Concentrators with High Loading Contents Based on in Situ Cross-Linked Carbon Nanodots for Enhancing Solar Energy Harvesting and Resisting Concentration-Induced Quenching.
    Talite MJ; Huang HY; Wu YH; Sena PG; Cai KB; Lin TN; Shen JL; Chou WC; Yuan CT
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34184-34192. PubMed ID: 30204408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory for optimal design of waveguiding light concentrators in photovoltaic microcell arrays.
    Semichaevsky AV; Johnson HT; Yoon J; Nuzzo RG; Li L; Rogers J
    Appl Opt; 2011 Jun; 50(17):2799-808. PubMed ID: 21673786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.
    Le KQ; John S
    Opt Express; 2014 Jan; 22 Suppl 1():A1-12. PubMed ID: 24921986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned dye structures limit reabsorption in luminescent solar concentrators.
    Tsoi S; Broer DJ; Bastiaansen CW; Debije MG
    Opt Express; 2010 Nov; 18 Suppl 4():A536-43. PubMed ID: 21165086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors.
    Verbunt PP; Tsoi S; Debije MG; Broer DJ; Bastiaansen CW; Lin CW; de Boer DK
    Opt Express; 2012 Sep; 20 Suppl 5():A655-68. PubMed ID: 23037532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of wavelength selective concentrator for micro PV/TPV systems using evolutionary algorithm.
    Yamada N; Ijiro T
    Opt Express; 2011 Jul; 19(14):13140-9. PubMed ID: 21747467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying self-absorption losses in luminescent solar concentrators.
    Ten Kate OM; Hooning KM; van der Kolk E
    Appl Opt; 2014 Aug; 53(23):5238-45. PubMed ID: 25320934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.
    Erickson CS; Bradshaw LR; McDowall S; Gilbertson JD; Gamelin DR; Patrick DL
    ACS Nano; 2014 Apr; 8(4):3461-7. PubMed ID: 24621014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient light harvesting of a luminescent solar concentrator using excitation energy transfer from an aggregation-induced emitter.
    Banal JL; Ghiggino KP; Wong WW
    Phys Chem Chem Phys; 2014 Dec; 16(46):25358-63. PubMed ID: 25338164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in phosphors and filters for luminescent solar concentrators.
    de Boer DK; Broer DJ; Debije MG; Keur W; Meijerink A; Ronda CR; Verbunt PP
    Opt Express; 2012 May; 20(10):A395-405. PubMed ID: 22712093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic light emissions in luminescent solar concentrators-isotropic systems.
    Verbunt PP; Sánchez-Somolinos C; Broer DJ; Debije MG
    Opt Express; 2013 May; 21 Suppl 3():A485-93. PubMed ID: 24104437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photon upconversion-assisted dual-band luminescence solar concentrators coupled with perovskite solar cells for highly efficient semi-transparent photovoltaic systems.
    Kim K; Nam SK; Cho J; Moon JH
    Nanoscale; 2020 Jun; 12(23):12426-12431. PubMed ID: 32494797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors.
    Debije MG; Van MP; Verbunt PP; Kastelijn MJ; van der Blom RH; Broer DJ; Bastiaansen CW
    Appl Opt; 2010 Feb; 49(4):745-51. PubMed ID: 20119029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doped Halide Perovskite Nanocrystals for Reabsorption-Free Luminescent Solar Concentrators.
    Meinardi F; Akkerman QA; Bruni F; Park S; Mauri M; Dang Z; Manna L; Brovelli S
    ACS Energy Lett; 2017 Oct; 2(10):2368-2377. PubMed ID: 31206029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescent solar concentrators utilizing stimulated emission.
    Kaysir MR; Fleming S; MacQueen RW; Schmidt TW; Argyros A
    Opt Express; 2016 Mar; 24(6):A497-505. PubMed ID: 27136870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.