These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 2241898)

  • 1. Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences.
    White AJ; Wharton CW
    Biochem J; 1990 Sep; 270(3):627-37. PubMed ID: 2241898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and elimination of protein perturbation in infrared difference spectra of acyl-chymotrypsin ester carbonyl groups by using 13C isotopic substitution.
    White AJ; Drabble K; Ward S; Wharton CW
    Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):317-23. PubMed ID: 1417785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of specificity on ligand conformation in acyl-chymotrypsins.
    Johal SS; White AJ; Wharton CW
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):281-7. PubMed ID: 8297332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis.
    Whiting AK; Peticolas WL
    Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length of the acyl carbonyl bond in acyl-serine proteases correlates with reactivity.
    Tonge PJ; Carey PR
    Biochemistry; 1990 Dec; 29(48):10723-7. PubMed ID: 2271679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman and Fourier transform infrared spectroscopic studies of the acyl carbonyl group in [3-(5-methyl-2-thienyl)acryloyl]chymotrypsin: evidence for artifacts in the spectra obtained by both techniques.
    Tonge PJ; Pusztai M; White AJ; Wharton CW; Carey PR
    Biochemistry; 1991 May; 30(19):4790-5. PubMed ID: 2029519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bonding in 2-aminobenzoyl-alpha-chymotrypsin formed by acylation of the enzyme with isatoic anhydride: IR and mass spectroscopic studies.
    Goodall JJ; Booth VK; Ashcroft AE; Wharton CW
    Chembiochem; 2002 Jan; 3(1):68-75. PubMed ID: 17590956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of the titration of substrate carbonyl groups in the active site of alpha-chymotrypsin by resonance Raman spectroscopy.
    Tonge PJ; Carey PR
    Biochemistry; 1989 Aug; 28(16):6701-9. PubMed ID: 2790025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forces, bond lengths, and reactivity: fundamental insight into the mechanism of enzyme catalysis.
    Tonge PJ; Carey PR
    Biochemistry; 1992 Sep; 31(38):9122-5. PubMed ID: 1390699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonding and protein perturbation in beta-lactam acyl-enzymes of Streptococcus pneumoniae penicillin-binding protein PBP2x.
    Chittock RS; Ward S; Wilkinson AS; Caspers P; Mensch B; Page MG; Wharton CW
    Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):153-9. PubMed ID: 9931311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dynamic structure for the acyl-enzyme species of the antibiotic aztreonam with the Citrobacter freundii beta-lactamase revealed by infrared spectroscopy and molecular dynamics simulations.
    Wilkinson AS; Bryant PK; Meroueh SO; Page MG; Mobashery S; Wharton CW
    Biochemistry; 2003 Feb; 42(7):1950-7. PubMed ID: 12590581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric fields in active sites: substrate switching from null to strong fields in thiol- and selenol-subtilisins.
    Dinakarpandian D; Shenoy BC; Hilvert D; McRee DE; McTigue M; Carey PR
    Biochemistry; 1999 May; 38(20):6659-67. PubMed ID: 10350485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation.
    Lewis RN; McElhaney RN; Pohle W; Mantsch HH
    Biophys J; 1994 Dec; 67(6):2367-75. PubMed ID: 7696476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuated total reflectance Fourier transform infrared analysis of an acyl-enzyme intermediate of alpha-chymotrypsin.
    Swedberg SA; Pesek JJ; Fink AL
    Anal Biochem; 1990 Apr; 186(1):153-8. PubMed ID: 2356965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-State
    Tang AW; Kong X; Terskikh V; Wu G
    J Phys Chem B; 2016 Nov; 120(43):11142-11150. PubMed ID: 27731644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups.
    Blume A; Hübner W; Messner G
    Biochemistry; 1988 Oct; 27(21):8239-49. PubMed ID: 3233207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomy of a simple acyl intermediate in enzyme catalysis: combined biophysical and modeling studies on ornithine acetyl transferase.
    Iqbal A; Clifton IJ; Bagonis M; Kershaw NJ; Domene C; Claridge TD; Wharton CW; Schofield CJ
    J Am Chem Soc; 2009 Jan; 131(2):749-57. PubMed ID: 19105697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site dynamics of acyl-chymotrypsin.
    Nakagawa S; Yu HA; Karplus M; Umeyama H
    Proteins; 1993 Jun; 16(2):172-94. PubMed ID: 8332606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman carbonyl frequencies and ultraviolet absorption maxima as indicators of the active site environment in native and unfolded chromophoric acyl-alpha-chymotrypsin.
    Argade PV; Gerke GK; Weber JP; Peticolas WL
    Biochemistry; 1984 Jan; 23(2):299-304. PubMed ID: 6607745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for two acyl group conformations in some furylacryloyl- and thienylacryloylchymotrypsins: resonance Raman studies of enzyme--substrate intermediates at pH 3.0.
    MacClement BA; Carriere RG; Phelps DJ; Carey PR
    Biochemistry; 1981 Jun; 20(12):3438-47. PubMed ID: 7260048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.