These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 22419367)

  • 1. High performance bipolar resistive switching memory devices based on Zn2SnO4 nanowires.
    Dong H; Zhang X; Zhao D; Niu Z; Zeng Q; Li J; Cai L; Wang Y; Zhou W; Gao M; Xie S
    Nanoscale; 2012 Apr; 4(8):2571-4. PubMed ID: 22419367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires.
    Oka K; Yanagida T; Nagashima K; Tanaka H; Kawai T
    J Am Chem Soc; 2009 Mar; 131(10):3434-5. PubMed ID: 19228063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonvolatile resistive switching in single crystalline ZnO nanowires.
    Yang Y; Zhang X; Gao M; Zeng F; Zhou W; Xie S; Pan F
    Nanoscale; 2011 Apr; 3(4):1917-21. PubMed ID: 21394361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forming and switching mechanisms of a cation-migration-based oxide resistive memory.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2010 Oct; 21(42):425205. PubMed ID: 20864781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires.
    Cagli C; Nardi F; Harteneck B; Tan Z; Zhang Y; Ielmini D
    Small; 2011 Oct; 7(20):2899-905. PubMed ID: 21874659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistive switching in single epitaxial ZnO nanoislands.
    Qi J; Olmedo M; Ren J; Zhan N; Zhao J; Zheng JG; Liu J
    ACS Nano; 2012 Feb; 6(2):1051-8. PubMed ID: 22257020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial nonuniformity in resistive-switching memory effects of NiO.
    Oka K; Yanagida T; Nagashima K; Kanai M; Kawai T; Kim JS; Park BH
    J Am Chem Soc; 2011 Aug; 133(32):12482-5. PubMed ID: 21776966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.
    Li M; Zhuge F; Zhu X; Yin K; Wang J; Liu Y; He C; Chen B; Li RW
    Nanotechnology; 2010 Oct; 21(42):425202. PubMed ID: 20858929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer.
    Wang SY; Lee DY; Huang TY; Wu JW; Tseng TY
    Nanotechnology; 2010 Dec; 21(49):495201. PubMed ID: 21071817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonvolatile multibit Schottky memory based on single n-type Ga doped CdSe nanowires.
    Wu D; Jiang Y; Yu Y; Zhang Y; Li G; Zhu Z; Wu C; Wang L; Luo L; Jie J
    Nanotechnology; 2012 Dec; 23(48):485203. PubMed ID: 23138192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale resistive switching devices: mechanisms and modeling.
    Yang Y; Lu W
    Nanoscale; 2013 Nov; 5(21):10076-92. PubMed ID: 24057010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances.
    Hu W; Qin N; Wu G; Lin Y; Li S; Bao D
    J Am Chem Soc; 2012 Sep; 134(36):14658-61. PubMed ID: 22931305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic mechanisms of memristive switching.
    Nagashima K; Yanagida T; Oka K; Kanai M; Klamchuen A; Kim JS; Park BH; Kawai T
    Nano Lett; 2011 May; 11(5):2114-8. PubMed ID: 21476563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual defects of cation and anion in memristive nonvolatile memory of metal oxides.
    Oka K; Yanagida T; Nagashima K; Kanai M; Xu B; Park BH; Katayama-Yoshida H; Kawai T
    J Am Chem Soc; 2012 Feb; 134(5):2535-8. PubMed ID: 22280105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic memristive devices for computing and neuromorphic applications.
    Gaba S; Sheridan P; Zhou J; Choi S; Lu W
    Nanoscale; 2013 Jul; 5(13):5872-8. PubMed ID: 23698627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Plasmon-Enhanced Spectroscopy in Memristive Switches.
    Di Martino G; Tappertzhofen S; Hofmann S; Baumberg J
    Small; 2016 Mar; 12(10):1334-41. PubMed ID: 26756792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Theoretical Insight Into ZnO NWs Memristive Behavior.
    Raffone F; Risplendi F; Cicero G
    Nano Lett; 2016 Apr; 16(4):2543-7. PubMed ID: 26928559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Strategy to Design High-Density Nanoscale Devices utilizing Vapor Deposition of Metal Halide Perovskite Materials.
    Hwang B; Lee JS
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28558134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry.
    Lee C; Kim I; Choi W; Shin H; Cho J
    Langmuir; 2009 Apr; 25(8):4274-8. PubMed ID: 19317425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.