These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22419584)

  • 1. Estimation and variable selection via frailty models with penalized likelihood.
    Androulakis E; Koukouvinos C; Vonta F
    Stat Med; 2012 Sep; 31(20):2223-39. PubMed ID: 22419584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nested frailty models using maximum penalized likelihood estimation.
    Rondeau V; Filleul L; Joly P
    Stat Med; 2006 Dec; 25(23):4036-52. PubMed ID: 16463308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. frailtypack: a computer program for the analysis of correlated failure time data using penalized likelihood estimation.
    Rondeau V; Gonzalez JR
    Comput Methods Programs Biomed; 2005 Nov; 80(2):154-64. PubMed ID: 16144730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of different bivariate correlated frailty models and estimation strategies.
    Wienke A; Arbeev KG; Locatelli I; Yashin AI
    Math Biosci; 2005 Nov; 198(1):1-13. PubMed ID: 16185720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized gamma frailty model.
    Balakrishnan N; Peng Y
    Stat Med; 2006 Aug; 25(16):2797-816. PubMed ID: 16220516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation method of the semiparametric mixture cure gamma frailty model.
    Peng Y; Zhang J
    Stat Med; 2008 Nov; 27(25):5177-94. PubMed ID: 18613271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General joint frailty model for recurrent event data with a dependent terminal event: Application to follicular lymphoma data.
    Mazroui Y; Mathoulin-Pelissier S; Soubeyran P; Rondeau V
    Stat Med; 2012 May; 31(11-12):1162-76. PubMed ID: 22307954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable selection in semiparametric cure models based on penalized likelihood, with application to breast cancer clinical trials.
    Liu X; Peng Y; Tu D; Liang H
    Stat Med; 2012 Oct; 31(24):2882-91. PubMed ID: 22733695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Goodness-of-fit tests for the frailty distribution in proportional hazards models with shared frailty.
    Geerdens C; Claeskens G; Janssen P
    Biostatistics; 2013 Jul; 14(3):433-46. PubMed ID: 23274285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events.
    Rondeau V; Mathoulin-Pelissier S; Jacqmin-Gadda H; Brouste V; Soubeyran P
    Biostatistics; 2007 Oct; 8(4):708-21. PubMed ID: 17267392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximum penalized likelihood estimation in a gamma-frailty model.
    Rondeau V; Commenges D; Joly P
    Lifetime Data Anal; 2003 Jun; 9(2):139-53. PubMed ID: 12735493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference for a family of survival models encompassing the proportional hazards and proportional odds models.
    Zucker DM; Yang S
    Stat Med; 2006 Mar; 25(6):995-1014. PubMed ID: 16220492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable selection for binary spatial regression: Penalized quasi-likelihood approach.
    Feng W; Sarkar A; Lim CY; Maiti T
    Biometrics; 2016 Dec; 72(4):1164-1172. PubMed ID: 27061299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-parametric estimation and model checking procedures for marginal gap time distributions for recurrent events.
    Kvist K; Gerster M; Andersen PK; Kessing LV
    Stat Med; 2007 Dec; 26(30):5394-410. PubMed ID: 17994608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penalized likelihood phylogenetic inference: bridging the parsimony-likelihood gap.
    Kim J; Sanderson MJ
    Syst Biol; 2008 Oct; 57(5):665-74. PubMed ID: 18853355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general approach for two-stage analysis of multilevel clustered non-Gaussian data.
    Chervoneva I; Iglewicz B; Hyslop T
    Biometrics; 2006 Sep; 62(3):752-9. PubMed ID: 16984317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. REML estimation for survival models with frailty.
    McGilchrist CA
    Biometrics; 1993 Mar; 49(1):221-5. PubMed ID: 8513103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian transformation cure frailty models with multivariate failure time data.
    Yin G
    Stat Med; 2008 Dec; 27(28):5929-40. PubMed ID: 18618427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of pattern-mixture models to outcomes that are potentially missing not at random using pseudo maximum likelihood estimation.
    Shen C; Weissfeld L
    Biostatistics; 2005 Apr; 6(2):333-47. PubMed ID: 15772110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameter estimation and model selection for Neyman-Scott point processes.
    Tanaka U; Ogata Y; Stoyan D
    Biom J; 2008 Feb; 50(1):43-57. PubMed ID: 17640081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.