BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 22419691)

  • 1. Mammalian target of rapamycin and the kidney. I. The signaling pathway.
    Lieberthal W; Levine JS
    Am J Physiol Renal Physiol; 2012 Jul; 303(1):F1-10. PubMed ID: 22419691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mTORC1- and mTORC2-interacting proteins keep their multifunctional partners focused.
    Bracho-Valdés I; Moreno-Alvarez P; Valencia-Martínez I; Robles-Molina E; Chávez-Vargas L; Vázquez-Prado J
    IUBMB Life; 2011 Oct; 63(10):896-914. PubMed ID: 21905202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes.
    Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R
    Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PI3K/mTOR signaling pathways in medulloblastoma.
    Mohan AL; Friedman MD; Ormond DR; Tobias M; Murali R; Jhanwar-Uniyal M
    Anticancer Res; 2012 Aug; 32(8):3141-6. PubMed ID: 22843885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of PRAS40 in Akt and mTOR signaling in health and disease.
    Wiza C; Nascimento EB; Ouwens DM
    Am J Physiol Endocrinol Metab; 2012 Jun; 302(12):E1453-60. PubMed ID: 22354785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth.
    Gibbons JJ; Abraham RT; Yu K
    Semin Oncol; 2009 Dec; 36 Suppl 3():S3-S17. PubMed ID: 19963098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state kinetic and inhibition studies of the mammalian target of rapamycin (mTOR) kinase domain and mTOR complexes.
    Tao Z; Barker J; Shi SD; Gehring M; Sun S
    Biochemistry; 2010 Oct; 49(39):8488-98. PubMed ID: 20804212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of tumor cell growth, proliferation and migration by X-387, a novel active-site inhibitor of mTOR.
    Chen SM; Liu JL; Wang X; Liang C; Ding J; Meng LH
    Biochem Pharmacol; 2012 May; 83(9):1183-94. PubMed ID: 22305748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR?
    Corradetti MN; Guan KL
    Oncogene; 2006 Oct; 25(48):6347-60. PubMed ID: 17041621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular signaling of amino acids towards mTORC1 activation in impaired human leucine catabolism.
    Schriever SC; Deutsch MJ; Adamski J; Roscher AA; Ensenauer R
    J Nutr Biochem; 2013 May; 24(5):824-31. PubMed ID: 22898570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring mammalian target of rapamycin (mTOR) activity.
    Ikenoue T; Hong S; Inoki K
    Methods Enzymol; 2009; 452():165-80. PubMed ID: 19200882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1.
    Rosner M; Hengstschläger M
    Hum Mol Genet; 2008 Oct; 17(19):2934-48. PubMed ID: 18614546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action.
    Soliman GA; Acosta-Jaquez HA; Dunlop EA; Ekim B; Maj NE; Tee AR; Fingar DC
    J Biol Chem; 2010 Mar; 285(11):7866-79. PubMed ID: 20022946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth.
    Yang X; Yang C; Farberman A; Rideout TC; de Lange CF; France J; Fan MZ
    J Anim Sci; 2008 Apr; 86(14 Suppl):E36-50. PubMed ID: 17998426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian target of rapamycin and the kidney. II. Pathophysiology and therapeutic implications.
    Lieberthal W; Levine JS
    Am J Physiol Renal Physiol; 2012 Jul; 303(2):F180-91. PubMed ID: 22496407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growing knowledge of the mTOR signaling network.
    Huang K; Fingar DC
    Semin Cell Dev Biol; 2014 Dec; 36():79-90. PubMed ID: 25242279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [TOR-centric concept of regulation mitogenic, metabolic and energetic signal processing in cell].
    Zubova SG; Shitikova ZhV; Pospelova TV
    Tsitologiia; 2012; 54(8):589-602. PubMed ID: 23074850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian target of rapamycin (mTOR) as a potential therapeutic target in various diseases.
    Kaur A; Sharma S
    Inflammopharmacology; 2017 Jun; 25(3):293-312. PubMed ID: 28417246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells.
    Sekulić A; Hudson CC; Homme JL; Yin P; Otterness DM; Karnitz LM; Abraham RT
    Cancer Res; 2000 Jul; 60(13):3504-13. PubMed ID: 10910062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival.
    Ma S; Venkatesh A; Langellotto F; Le YZ; Hall MN; Rüegg MA; Punzo C
    Exp Eye Res; 2015 Jun; 135():1-13. PubMed ID: 25887293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.