These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Experimental and mathematical approaches to modeling plant metabolic networks. Rios-Estepa R; Lange BM Phytochemistry; 2007; 68(16-18):2351-74. PubMed ID: 17561179 [TBL] [Abstract][Full Text] [Related]
4. Applications of kinetic modeling to plant metabolism. Rohwer JM Methods Mol Biol; 2014; 1083():275-86. PubMed ID: 24218221 [TBL] [Abstract][Full Text] [Related]
5. Flux balance analysis of biological systems: applications and challenges. Raman K; Chandra N Brief Bioinform; 2009 Jul; 10(4):435-49. PubMed ID: 19287049 [TBL] [Abstract][Full Text] [Related]
6. Combining bioinformatics resources for the structural modelling of eukaryotic metabolic networks. Gille C; Hoffmann S; Holzhütter HG Genome Inform; 2005; 16(1):223-32. PubMed ID: 16362925 [TBL] [Abstract][Full Text] [Related]
7. Analysis of metabolic flux using dynamic labelling and metabolic modelling. Fernie AR; Morgan JA Plant Cell Environ; 2013 Sep; 36(9):1738-50. PubMed ID: 23421750 [TBL] [Abstract][Full Text] [Related]
8. KiPar, a tool for systematic information retrieval regarding parameters for kinetic modelling of yeast metabolic pathways. Spasic I; Simeonidis E; Messiha HL; Paton NW; Kell DB Bioinformatics; 2009 Jun; 25(11):1404-11. PubMed ID: 19336445 [TBL] [Abstract][Full Text] [Related]
9. Comparing methods for metabolic network analysis and an application to metabolic engineering. Tomar N; De RK Gene; 2013 May; 521(1):1-14. PubMed ID: 23537990 [TBL] [Abstract][Full Text] [Related]
10. Flux balance analysis as an alternative method to estimate fluxes without labeling. Grafahrend-Belau E; Junker A; Schreiber F; Junker BH Methods Mol Biol; 2014; 1090():281-99. PubMed ID: 24222422 [TBL] [Abstract][Full Text] [Related]
11. Strategies for investigating the plant metabolic network with steady-state metabolic flux analysis: lessons from an Arabidopsis cell culture and other systems. Kruger NJ; Masakapalli SK; Ratcliffe RG J Exp Bot; 2012 Mar; 63(6):2309-23. PubMed ID: 22140245 [TBL] [Abstract][Full Text] [Related]
12. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables. Kim JI; Varner JD; Ramkrishna D Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908 [TBL] [Abstract][Full Text] [Related]
15. Hands-on metabolism analysis of complex biochemical networks using elementary flux modes. Schäuble S; Schuster S; Kaleta C Methods Enzymol; 2011; 500():437-56. PubMed ID: 21943910 [TBL] [Abstract][Full Text] [Related]
16. Petri nets in Snoopy: a unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks. Marwan W; Rohr C; Heiner M Methods Mol Biol; 2012; 804():409-37. PubMed ID: 22144165 [TBL] [Abstract][Full Text] [Related]
17. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566 [TBL] [Abstract][Full Text] [Related]
18. ReMatch: a web-based tool to construct, store and share stoichiometric metabolic models with carbon maps for metabolic flux analysis. Pitkänen E; Akerlund A; Rantanen A; Jouhten P; Ukkonen E J Integr Bioinform; 2008 Aug; 5(2):. PubMed ID: 20134058 [TBL] [Abstract][Full Text] [Related]