BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 2241986)

  • 21. Role of ATP and sodium in polyamine transport in bovine pulmonary artery smooth cells.
    Aziz SM; Lipke DW; Olson JW; Gillespie MN
    Biochem Pharmacol; 1994 Oct; 48(8):1611-8. PubMed ID: 7526866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Putrescine export in Xenopus laevis oocytes occurs against a concentration gradient: evidence for a non-diffusional export process.
    Fukumoto GH; Byus CV
    Biochim Biophys Acta; 1997 Mar; 1324(2):215-22. PubMed ID: 9092708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport of amino acids and nucleosides in metaphase-arrested unfertilized oocytes of Xenopus laevis.
    Jung D; Richter HP
    Cell Differ; 1984 Jun; 14(2):99-103. PubMed ID: 6467381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uptake of biotin by native Xenopus laevis oocytes.
    Said HM; Polenzani L; Khorchid S; Hollander D; Miledi R
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C397-401. PubMed ID: 2399962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Riboflavin uptake by native Xenopus laevis oocytes.
    Dyer DL; Said HM
    Biochim Biophys Acta; 1995 Mar; 1234(1):15-21. PubMed ID: 7880856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes of alanine-sodium co-transport during maturation of Xenopus laevis oocytes.
    Jung D; Richter HP
    Cell Biol Int Rep; 1983 Sep; 7(9):697-707. PubMed ID: 6627406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leucine transport in Xenopus laevis oocytes: functional and morphological analysis of different defolliculation procedures.
    Marciani P; Castagna M; Bonasoro F; Carnevali MD; Sacchi VF
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Apr; 119(4):1009-17. PubMed ID: 9773492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beneficial effects of spermidine on cardiovascular health and longevity suggest a cell type-specific import of polyamines by cardiomyocytes.
    Nilsson BO; Persson L
    Biochem Soc Trans; 2019 Feb; 47(1):265-272. PubMed ID: 30578348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of protein kinase C activators and inhibitors, calmodulin antagonists and membrane sialic acids in polyamine transport in murine leukemia cells.
    Khan NA; Quemener V; Moulinoux JP
    Cell Mol Biol; 1989; 35(2):215-24. PubMed ID: 2567212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for intracellular sodium pumps in permeabilized Xenopus laevis oocytes.
    Schmalzing G; Kröner S; Passow H
    Biochem J; 1989 Jun; 260(2):395-9. PubMed ID: 2548475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of the interaction between spermidine and the G-G mismatch containing acceptor stem in tRNA(Ile): molecular modeling, density functional theory, and molecular dynamics study.
    Hayashi Y; Sugiyama H; Suganami A; Higashi K; Kashiwagi K; Igarashi K; Kawauchi S; Tamura Y
    Biochem Biophys Res Commun; 2013 Nov; 441(4):999-1004. PubMed ID: 24239547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lithium homeostasis in Xenopus oocytes: implications for the study of signal transduction.
    Gomez JR; Karkanias NB; Lenox RH; Papke RL
    Life Sci; 1998; 63(19):1715-24. PubMed ID: 9806227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A possible novel mechanism underlying temperature-dependent uptake of [3H]spermidine in nuclear fractions of murine brain.
    Kuramoto N; Inoue K; Takano K; Taniura H; Sakata K; Ogita K; Yoneda Y
    Brain Res; 2003 Aug; 981(1-2):78-84. PubMed ID: 12885428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of water transport in Na+-coupled glucose transporters expressed in Xenopus oocytes.
    Zeuthen T; Zeuthen E
    Biophys J; 2007 Aug; 93(4):1413-6; discussion 1417-9. PubMed ID: 17513358
    [No Abstract]   [Full Text] [Related]  

  • 35. K+ promotes the favorable effect of polyamine on gene expression better than Na.
    Nishio T; Sugino K; Yoshikawa Y; Matsumoto M; Oe Y; Sadakane K; Yoshikawa K
    PLoS One; 2020; 15(9):e0238447. PubMed ID: 32881909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural Characterization of Histatin 5-Spermidine Conjugates: A Combined Experimental and Theoretical Study.
    Jephthah S; Henriques J; Cragnell C; Puri S; Edgerton M; Skepö M
    J Chem Inf Model; 2017 Jun; 57(6):1330-1341. PubMed ID: 28586222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tailoring of silica-based nanoporous pod by spermidine multi-activity.
    Della Rosa G; Di Corato R; Carpi S; Polini B; Taurino A; Tedeschi L; Nieri P; Rinaldi R; Aloisi A
    Sci Rep; 2020 Dec; 10(1):21142. PubMed ID: 33273530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport of polyamines in Drosophila S2 cells: kinetics, pharmacology and dependence on the plasma membrane proton gradient.
    Romero-Calderón R; Krantz DE
    Biochem J; 2006 Jan; 393(Pt 2):583-9. PubMed ID: 16248856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyamine flux in Xenopus oocytes through hemi-gap junctional channels.
    Enkvetchakul D; Ebihara L; Nichols CG
    J Physiol; 2003 Nov; 553(Pt 1):95-100. PubMed ID: 12963797
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.