These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22419972)

  • 1. A skeleton model for the network of cyclin-dependent kinases driving the mammalian cell cycle.
    Gérard C; Goldbeter A
    Interface Focus; 2011 Feb; 1(1):24-35. PubMed ID: 22419972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From quiescence to proliferation: Cdk oscillations drive the mammalian cell cycle.
    Gérard C; Goldbeter A
    Front Physiol; 2012; 3():413. PubMed ID: 23130001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits.
    Gérard C; Goldbeter A
    Chaos; 2010 Dec; 20(4):045109. PubMed ID: 21198121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle.
    Gérard C; Goldbeter A
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21643-8. PubMed ID: 20007375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of positive feedback loops on the robustness of oscillations in the network of cyclin-dependent kinases driving the mammalian cell cycle.
    Gérard C; Gonze D; Goldbeter A
    FEBS J; 2012 Sep; 279(18):3411-31. PubMed ID: 22458764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting a skeleton model for the mammalian cell cycle: From bistability to Cdk oscillations and cellular heterogeneity.
    Gérard C; Gonze D; Goldbeter A
    J Theor Biol; 2019 Jan; 461():276-290. PubMed ID: 30352237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the mammalian cell cycle in physiological and pathological conditions.
    Gérard C; Goldbeter A
    Wiley Interdiscip Rev Syst Biol Med; 2016; 8(2):140-56. PubMed ID: 26613368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The balance between cell cycle arrest and cell proliferation: control by the extracellular matrix and by contact inhibition.
    Gérard C; Goldbeter A
    Interface Focus; 2014 Jun; 4(3):20130075. PubMed ID: 24904738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms.
    Gérard C; Goldbeter A
    PLoS Comput Biol; 2012 May; 8(5):e1002516. PubMed ID: 22693436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternating oscillations and chaos in a model of two coupled biochemical oscillators driving successive phases of the cell cycle.
    Romond PC; Rustici M; Gonze D; Goldbeter A
    Ann N Y Acad Sci; 1999 Jun; 879():180-93. PubMed ID: 10415827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why minimal is not optimal: driving the mammalian cell cycle--and drug discovery--with a physiologic CDK control network.
    Merrick KA; Fisher RP
    Cell Cycle; 2012 Jul; 11(14):2600-5. PubMed ID: 22732498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 1.26 μW Cytomimetic IC Emulating Complex Nonlinear Mammalian Cell Cycle Dynamics: Synthesis, Simulation and Proof-of-Concept Measured Results.
    Houssein A; Papadimitriou KI; Drakakis EM
    IEEE Trans Biomed Circuits Syst; 2015 Aug; 9(4):543-54. PubMed ID: 26316209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclins and CDKS in development and cancer: lessons from genetically modified mice.
    Santamaria D; Ortega S
    Front Biosci; 2006 Jan; 11():1164-88. PubMed ID: 16146805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network.
    Simmons Kovacs LA; Mayhew MB; Orlando DA; Jin Y; Li Q; Huang C; Reed SI; Mukherjee S; Haase SB
    Mol Cell; 2012 Mar; 45(5):669-79. PubMed ID: 22306294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G1 cyclin-dependent kinases are sufficient to initiate DNA synthesis in quiescent human fibroblasts.
    Connell-Crowley L; Elledge SJ; Harper JW
    Curr Biol; 1998 Jan; 8(1):65-8. PubMed ID: 9427630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].
    Viallard JF; Lacombe F; Belloc F; Pellegrin JL; Reiffers J
    Cancer Radiother; 2001 Apr; 5(2):109-29. PubMed ID: 11355576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential phosphorylation of T-47D human breast cancer cell substrates by D1-, D3-, E-, and A-type cyclin-CDK complexes.
    Sarcevic B; Lilischkis R; Sutherland RL
    J Biol Chem; 1997 Dec; 272(52):33327-37. PubMed ID: 9407125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs.
    Roskoski R
    Pharmacol Res; 2019 Jan; 139():471-488. PubMed ID: 30508677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclin A-CDK activity during G1 phase impairs MCM chromatin loading and inhibits DNA synthesis in mammalian cells.
    Wheeler LW; Lents NH; Baldassare JJ
    Cell Cycle; 2008 Jul; 7(14):2179-88. PubMed ID: 18635963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone acetylation and the cell-cycle in cancer.
    Wang C; Fu M; Mani S; Wadler S; Senderowicz AM; Pestell RG
    Front Biosci; 2001 Apr; 6():D610-29. PubMed ID: 11282573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.