These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22419982)

  • 1. Synchronization and entrainment of coupled circadian oscillators.
    Komin N; Murza AC; Hernández-García E; Toral R
    Interface Focus; 2011 Feb; 1(1):167-76. PubMed ID: 22419982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling-induced synchronization in multicellular circadian oscillators of mammals.
    Li Y; Liu Z; Luo J; Wu H
    Cogn Neurodyn; 2013 Feb; 7(1):59-65. PubMed ID: 24427191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus.
    Bernard S; Gonze D; Cajavec B; Herzel H; Kramer A
    PLoS Comput Biol; 2007 Apr; 3(4):e68. PubMed ID: 17432930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photic desynchronization of two subgroups of circadian oscillators in a network model of the suprachiasmatic nucleus with dispersed coupling strengths.
    Gu C; Liu Z; Schwartz WJ; Indic P
    PLoS One; 2012; 7(5):e36900. PubMed ID: 22615838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise Induces Oscillation and Synchronization of the Circadian Neurons.
    Gu C; Xu J; Rohling J; Yang H; Liu Z
    PLoS One; 2015; 10(12):e0145360. PubMed ID: 26691765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneity of neuronal properties determines the collective behavior of the neurons in the suprachiasmatic nucleus.
    Gu CG; Wang P; Weng TF; Yang HJ; Rohling J
    Math Biosci Eng; 2019 Mar; 16(4):1893-1913. PubMed ID: 31137191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise-induced coherence in multicellular circadian clocks.
    Ullner E; Buceta J; Díez-Noguera A; García-Ojalvo J
    Biophys J; 2009 May; 96(9):3573-81. PubMed ID: 19413962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous synchronization of coupled circadian oscillators.
    Gonze D; Bernard S; Waltermann C; Kramer A; Herzel H
    Biophys J; 2005 Jul; 89(1):120-9. PubMed ID: 15849258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of network architecture on synchronization and entrainment properties of the circadian oscillations in the suprachiasmatic nucleus.
    Hafner M; Koeppl H; Gonze D
    PLoS Comput Biol; 2012; 8(3):e1002419. PubMed ID: 22423219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion of the intrinsic neuronal periods affects the relationship of the entrainment range to the coupling strength in the suprachiasmatic nucleus.
    Gu C; Yang H; Wang M
    Phys Rev E; 2017 Nov; 96(5-1):052207. PubMed ID: 29347798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of phase splitting in two coupled groups of suprachiasmatic-nucleus neurons.
    Gu C; Wang J; Wang J; Liu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046224. PubMed ID: 21599287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus.
    Moore RY
    Fed Proc; 1983 Aug; 42(11):2783-9. PubMed ID: 6135628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modeling in chronobiology.
    Bordyugov G; Westermark PO; Korenčič A; Bernard S; Herzel H
    Handb Exp Pharmacol; 2013; (217):335-57. PubMed ID: 23604486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entrainment degree of globally coupled Winfree oscillators under external forcing.
    Zhang Y; Hoveijn I; Efstathiou K
    Chaos; 2022 Oct; 32(10):103121. PubMed ID: 36319288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of non-self-sustained oscillators on the en-trainment ability of the suprachiasmatic nucleus.
    Gu C; Tang M; Rohling JH; Yang H
    Sci Rep; 2016 Nov; 6():37661. PubMed ID: 27869182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forced desynchronization model for a diurnal primate.
    Silva CA; Melo LIM; Pires AR; Barbalho JC; Melo AV; Fernandes DAC; Oliveira EB; Azevedo CVM; Cambras T; Díez-Noguera A; Fontenele-Araujo J
    Chronobiol Int; 2018 Jan; 35(1):35-48. PubMed ID: 29211510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of food-entrained circadian rhythms in rats during long-term exposure to constant light.
    Mistlberger RE; Houpt TA; Moore-Ede MC
    Chronobiol Int; 1990; 7(5-6):383-91. PubMed ID: 2097071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in intrinsic amplitudes of neuronal oscillators improve synchronization in the suprachiasmatic nucleus.
    Gu C; Yang H
    Chaos; 2017 Sep; 27(9):093108. PubMed ID: 28964140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of synchronization process of the circadian timing system of mammals.
    Cardoso FR; de Oliveira Cruz FA; Silva D; Cortez CM
    Biol Cybern; 2009 May; 100(5):385-93. PubMed ID: 19367410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.