These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 22419986)

  • 1. Acoustic radiation force-based elasticity imaging methods.
    Palmeri ML; Nightingale KR
    Interface Focus; 2011 Aug; 1(4):553-64. PubMed ID: 22419986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What challenges must be overcome before ultrasound elasticity imaging is ready for the clinic?
    Palmeri ML; Nightingale KR
    Imaging Med; 2011 Aug; 3(4):433-444. PubMed ID: 22171226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology.
    Shiina T; Nightingale KR; Palmeri ML; Hall TJ; Bamber JC; Barr RG; Castera L; Choi BI; Chou YH; Cosgrove D; Dietrich CF; Ding H; Amy D; Farrokh A; Ferraioli G; Filice C; Friedrich-Rust M; Nakashima K; Schafer F; Sporea I; Suzuki S; Wilson S; Kudo M
    Ultrasound Med Biol; 2015 May; 41(5):1126-47. PubMed ID: 25805059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation.
    Palmeri ML; McAleavey SA; Fong KL; Trahey GE; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2065-79. PubMed ID: 17091842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic Radiation Force Impulse (ARFI) Imaging: a Review.
    Nightingale K
    Curr Med Imaging Rev; 2011 Nov; 7(4):328-339. PubMed ID: 22545033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite-element method model of soft tissue response to impulsive acoustic radiation force.
    Palmeri ML; Sharma AC; Bouchard RR; Nightingale RW; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1699-712. PubMed ID: 16382621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing stiffness of human prostates using acoustic radiation force.
    Zhai L; Madden J; Foo WC; Mouraviev V; Polascik TJ; Palmeri ML; Nightingale KR
    Ultrason Imaging; 2010 Oct; 32(4):201-13. PubMed ID: 21213566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic radiation force elasticity imaging in diagnostic ultrasound.
    Doherty JR; Trahey GE; Nightingale KR; Palmeri ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):685-701. PubMed ID: 23549529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic Radiation Force Based Ultrasound Elasticity Imaging for Biomedical Applications.
    Wang L
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying hepatic shear modulus in vivo using acoustic radiation force.
    Palmeri ML; Wang MH; Dahl JJ; Frinkley KD; Nightingale KR
    Ultrasound Med Biol; 2008 Apr; 34(4):546-58. PubMed ID: 18222031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method.
    Xie P; Wang M; Guo Y; Wen H; Chen X; Chen S; Lin H
    Technol Health Care; 2018; 26(S1):449-458. PubMed ID: 29758968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of contrast in images generated with transient acoustic radiation force.
    Nightingale K; Palmeri M; Trahey G
    Ultrasound Med Biol; 2006 Jan; 32(1):61-72. PubMed ID: 16364798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues.
    Zhu J; He X; Chen Z
    Appl Spectrosc Rev; 2019; 54(6):457-481. PubMed ID: 31749516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of tissue's elasticity with surface wave speed.
    Zhang X; Greenleaf JF
    J Acoust Soc Am; 2007 Nov; 122(5):2522-5. PubMed ID: 18189542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of liver viscoelasticity with acoustic radiation force: a study of hepatic fibrosis in a rat model.
    Chen X; Shen Y; Zheng Y; Lin H; Guo Y; Zhu Y; Zhang X; Wang T; Chen S
    Ultrasound Med Biol; 2013 Nov; 39(11):2091-102. PubMed ID: 23993170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.
    Shih CC; Lai TY; Huang CC
    Ultrasonics; 2016 Aug; 70():64-74. PubMed ID: 27135187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harmonic tracking of acoustic radiation force-induced displacements.
    Doherty JR; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2347-58. PubMed ID: 24158290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.