These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22420832)

  • 1. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects.
    Szőke I; Farkas A; Balásházy I; Hofmann W; Madas BG; Szőke R
    Int J Radiat Biol; 2012 Jun; 88(6):477-92. PubMed ID: 22420832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of cell deaths and cell transformations of inhaled radon in homes and mines based on a biophysical and microdosimetric model.
    Szoke I; Farkas A; Balásházy I; Hofmann W
    Int J Radiat Biol; 2008 Feb; 84(2):127-38. PubMed ID: 18246481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-linear relationship of cell hit and transformation probabilities in a low dose of inhaled radon progenies.
    Balásházy I; Farkas A; Madas BG; Hofmann W
    J Radiol Prot; 2009 Jun; 29(2):147-62. PubMed ID: 19454792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of site-specific bronchial radon progeny deposition on the spatial and temporal distributions of cellular responses.
    Farkas A; Hofmann W; Balásházy I; Szoke I; Madas BG; Moustafa M
    Radiat Environ Biophys; 2011 May; 50(2):281-97. PubMed ID: 21327807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular burdens and biological effects on tissue level caused by inhaled radon progenies.
    Madas BG; Balásházy I; Farkas Á; Szoke I
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):253-7. PubMed ID: 21186213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha-hit, cellular dose, cell transformation and inactivation probability distributions of radon progenies in the bronchial epithelium.
    Szoke I; Balásházy I; Farkas A; Hofmann W; Szoke R; Fakir H; Kis E
    Radiat Prot Dosimetry; 2006; 122(1-4):540-2. PubMed ID: 17145731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of alpha particles at the cellular level--implications for the radiation weighting factor.
    Hofmann W; Fakir H; Aubineau-Laniece I; Pihet P
    Radiat Prot Dosimetry; 2004; 112(4):493-500. PubMed ID: 15623884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic aspects of primary cellular consequences of radon inhalation.
    Szoke I; Farkas A; Balásházy I; Hofmann W
    Radiat Res; 2009 Jan; 171(1):96-106. PubMed ID: 19138049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the effect of non-uniform radon progeny activities on transformation frequencies in human bronchial airways.
    Fakir H; Hofmann W; Aubineau-Laniece I
    Radiat Prot Dosimetry; 2006; 121(3):221-35. PubMed ID: 16682395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microdosimetry of radon progeny alpha particles in bronchial airway bifurcations.
    Fakir H; Hofmann W; Aubineau-Lanièce I
    Radiat Prot Dosimetry; 2005; 117(4):382-94. PubMed ID: 15972358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probability of bystander effect induced by alpha-particles emitted by radon progeny using the analytical model of tracheobronchial tree.
    Jovanović B; Nikezić D
    Radiat Prot Dosimetry; 2010 Dec; 142(2-4):168-73. PubMed ID: 20956282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radon lung dosimetry models.
    Hofmann W; Winkler-Heil R
    Radiat Prot Dosimetry; 2011 May; 145(2-3):206-12. PubMed ID: 21586543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do low dose-rate bystander effects influence domestic radon risks?
    Brenner DJ; Sachs RK
    Int J Radiat Biol; 2002 Jul; 78(7):593-604. PubMed ID: 12079538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inhomogeneous activity distributions and airway geometry on cellular doses in radon lung dosimetry.
    Szoke I; Balásházy I; Farkas A; Hofmann W
    Radiat Prot Dosimetry; 2007; 127(1-4):68-72. PubMed ID: 17561519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFD as a tool in risk assessment of inhaled radon progenies.
    Farkas A; Hofmann W; Balásházy I; Szoke I
    Radiat Prot Dosimetry; 2006; 122(1-4):537-9. PubMed ID: 17132667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of radiation damage to lung cells after exposure to radon decay products.
    Breier R; Böhm R; Kopáni M
    Neuro Endocrinol Lett; 2006 Dec; 27 Suppl 2():86-90. PubMed ID: 17159787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdosimetry of inhomogeneous radon progeny distributions in bronchial airways.
    Fakir H; Hofmann W; Caswell RS; Aubineau-Lanièce I
    Radiat Prot Dosimetry; 2005; 113(2):129-39. PubMed ID: 15644406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of the effect of mucociliary clearance on the bronchial distribution of inhaled radon progenies and related cellular damage using a new deposition and clearance model for the lung.
    Farkas Á
    Radiat Environ Biophys; 2020 Nov; 59(4):651-661. PubMed ID: 32865689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling intersubject variability of bronchial doses for inhaled radon progeny.
    Hofmann W; Winkler-Heil R; Hussain M
    Health Phys; 2010 Oct; 99(4):523-31. PubMed ID: 20838094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-scaled Monte Carlo calculation for radon-induced cellular damage in the bronchial airway epithelium.
    Abu Shqair A; Kim EH
    Sci Rep; 2021 May; 11(1):10230. PubMed ID: 33986410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.