BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22421099)

  • 1. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic gait trainer in water: development of an underwater gait-training orthosis.
    Miyoshi T; Hiramatsu K; Yamamoto S; Nakazawa K; Akai M
    Disabil Rehabil; 2008; 30(2):81-7. PubMed ID: 17852216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies.
    Jamwal PK; Hussain S; Ghayesh MH
    Proc Inst Mech Eng H; 2020 May; 234(5):444-457. PubMed ID: 31916511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of body weight support gait training system using antagonistic bi-articular muscle model.
    Shibata Y; Imai S; Nobutomo T; Miyoshi T; Yamamoto S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4468-71. PubMed ID: 21095773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies.
    Veale AJ; Xie SQ
    Med Eng Phys; 2016 Apr; 38(4):317-25. PubMed ID: 26923385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified Computed Torque Control of a Robotic Orthosis for Gait Rehabilitation.
    Dao QT; Yamamoto SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1719-1722. PubMed ID: 30440726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treadmill training of paraplegic patients using a robotic orthosis.
    Colombo G; Joerg M; Schreier R; Dietz V
    J Rehabil Res Dev; 2000; 37(6):693-700. PubMed ID: 11321005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor adaptation during dorsiflexion-assisted walking with a powered orthosis.
    Kao PC; Ferris DP
    Gait Posture; 2009 Feb; 29(2):230-6. PubMed ID: 18838269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients.
    Ohta Y; Yano H; Suzuki R; Yoshida M; Kawashima N; Nakazawa K
    Proc Inst Mech Eng H; 2007 Aug; 221(6):629-39. PubMed ID: 17937202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive impedance control of a robotic orthosis for gait rehabilitation.
    Hussain S; Xie SQ; Jamwal PK
    IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in muscle activation patterns during robotic-assisted walking.
    Hidler JM; Wall AE
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):184-93. PubMed ID: 15621324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of powered gait orthosis on walking in individuals with paraplegia.
    Arazpour M; Ahmadi Bani M; Kashani RV; Tabatabai Ghomshe F; Mousavi ME; Hutchins SW
    Prosthet Orthot Int; 2013 Aug; 37(4):261-7. PubMed ID: 23172910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.
    Mat Dzahir MA; Nobutomo T; Yamamoto SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6417-20. PubMed ID: 24111210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wearable robotic knee orthosis for gait training: a case-series of hemiparetic stroke survivors.
    Wong CK; Bishop L; Stein J
    Prosthet Orthot Int; 2012 Mar; 36(1):113-20. PubMed ID: 22082495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of gait training system powered by pneumatic actuator like human musculoskeletal system.
    Yamamoto S; Shibata Y; Imai S; Nobutomo T; Miyoshi T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975452. PubMed ID: 22275650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis.
    Shamaei K; Napolitano PC; Dollar AM
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):258-68. PubMed ID: 24608684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury.
    Israel JF; Campbell DD; Kahn JH; Hornby TG
    Phys Ther; 2006 Nov; 86(11):1466-78. PubMed ID: 17079746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved powered ankle-foot orthosis using proportional myoelectric control.
    Ferris DP; Gordon KE; Sawicki GS; Peethambaran A
    Gait Posture; 2006 Jun; 23(4):425-8. PubMed ID: 16098749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.