These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22421099)

  • 41. Stepping with an ankle foot orthosis re-examined: a mechanical perspective for clinical decision making.
    Nair PM; Rooney KL; Kautz SA; Behrman AL
    Clin Biomech (Bristol, Avon); 2010 Jul; 25(6):618-22. PubMed ID: 20362373
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal.
    do Nascimento BG; Vimieiro CB; Nagem DA; Pinotti M
    Artif Organs; 2008 Apr; 32(4):317-22. PubMed ID: 18370947
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Slacking by the human motor system: computational models and implications for robotic orthoses.
    Reinkensmeyer DJ; Akoner O; Ferris DP; Gordon KE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2129-32. PubMed ID: 19964581
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inverse-dynamics based assessment of gait using a robotic orthosis.
    Hidler J; Neckel N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():185-8. PubMed ID: 17946800
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
    Rogozinski BM; Davids JR; Davis RB; Jameson GG; Blackhurst DW
    J Bone Joint Surg Am; 2009 Oct; 91(10):2440-7. PubMed ID: 19797580
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A pilot study on the feasibility of robot-aided leg motor training to facilitate active participation.
    Krishnan C; Ranganathan R; Dhaher YY; Rymer WZ
    PLoS One; 2013; 8(10):e77370. PubMed ID: 24146986
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of the autonomic response in healthy subjects during treadmill training with assistance of a robot-driven gait orthosis.
    Magagnin V; Porta A; Fusini L; Licari V; Bo I; Turiel M; Molteni F; Cerutti S; Caiani EG
    Gait Posture; 2009 Apr; 29(3):504-8. PubMed ID: 19138523
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design, Manufacturing, and Control of a Pneumatic-Driven Passive Robotic Gait Training System for Muscle-Weakness in a Lower Limb.
    Li IH; Lin YS; Lee LW; Lin WT
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A pneumatically-actuated lower-limb orthosis.
    Wu SK; Jordan M; Shen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8126-9. PubMed ID: 22256228
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering design review of stance-control knee-ankle-foot orthoses.
    Yakimovich T; Lemaire ED; Kofman J
    J Rehabil Res Dev; 2009; 46(2):257-67. PubMed ID: 19533539
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SCRIPT passive orthosis: design and technical evaluation of the wrist and hand orthosis for rehabilitation training at home.
    Ates S; Lobo-Prat J; Lammertse P; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650401. PubMed ID: 24187220
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia.
    Audu ML; To CS; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):610-8. PubMed ID: 20378478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards human-knee orthosis interaction based on adaptive impedance control through stiffness adjustment.
    Figueiredo J; Felix P; Santos CP; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():406-411. PubMed ID: 28813853
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of a novel powered gait orthosis for walking by a spinal cord injury patient.
    Arazpour M; Chitsazan A; Hutchins SW; Mousavi ME; Takamjani EE; Ghomshe FT; Aminian G; Rahgozar M; Bani MA
    Prosthet Orthot Int; 2012 Jun; 36(2):239-46. PubMed ID: 22368113
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robotic orthoses for body weight-supported treadmill training.
    Winchester P; Querry R
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):159-72. PubMed ID: 16517349
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of a quasi-passive 3 DOFs ankle-foot wearable rehabilitation orthosis.
    Zhang C; Zhu Y; Fan J; Zhao J; Yu H
    Biomed Mater Eng; 2015; 26 Suppl 1():S647-54. PubMed ID: 26406060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The influence of locomotor treatment using robotic body-weight-supported treadmill training on rehabilitation outcome of patients suffering from neurological disorders].
    Schwartz I; Meiner Z
    Harefuah; 2013 Mar; 152(3):166-71, 182, 181. PubMed ID: 23713378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.