These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 22421136)
1. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Lee SS; Avalos Vizcarra I; Huberts DH; Lee LP; Heinemann M Proc Natl Acad Sci U S A; 2012 Mar; 109(13):4916-20. PubMed ID: 22421136 [TBL] [Abstract][Full Text] [Related]
2. Continuous high-resolution microscopic observation of replicative aging in budding yeast. Huberts DH; Janssens GE; Lee SS; Vizcarra IA; Heinemann M J Vis Exp; 2013 Aug; (78):e50143. PubMed ID: 23995364 [TBL] [Abstract][Full Text] [Related]
3. A high-throughput microfluidic diploid yeast long-term culturing (DYLC) chip capable of bud reorientation and concerted daughter dissection for replicative lifespan determination. Wang Y; Zhu Z; Liu K; Xiao Q; Geng Y; Xu F; Ouyang S; Zheng K; Fan Y; Jin N; Zhao X; Marchisio MA; Pan D; Huang QA J Nanobiotechnology; 2022 Mar; 20(1):171. PubMed ID: 35361237 [TBL] [Abstract][Full Text] [Related]
4. Construction and use of a microfluidic dissection platform for long-term imaging of cellular processes in budding yeast. Huberts DH; Sik Lee S; Gonzáles J; Janssens GE; Vizcarra IA; Heinemann M Nat Protoc; 2013 Jun; 8(6):1019-27. PubMed ID: 23640166 [TBL] [Abstract][Full Text] [Related]
5. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps. Xu X; Zhu Z; Wang Y; Geng Y; Xu F; Marchisio MA; Wang Z; Pan D Anal Bioanal Chem; 2021 Mar; 413(8):2181-2193. PubMed ID: 33517467 [TBL] [Abstract][Full Text] [Related]
6. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images. Xiao Q; Wang Y; Fan J; Yi Z; Hong H; Xie X; Huang QA; Fu J; Ouyang J; Zhao X; Wang Z; Zhu Z Biosens Bioelectron; 2024 Jan; 244():115807. PubMed ID: 37948914 [TBL] [Abstract][Full Text] [Related]
7. Real-Time Monitoring of Dissection Events of Single Budding Yeast in a Microfluidic Cell-Culturing Device Integrated With Electrical Impedance Biosensor. Zhu Z; Geng Y; Wang Y; Liu K; Yi Z; Zhao X; Ouyang S; Zheng K; Fan Y; Wang Z Front Bioeng Biotechnol; 2021; 9():783428. PubMed ID: 34778241 [TBL] [Abstract][Full Text] [Related]
8. Measuring the Replicative Lifespan of Saccharomyces cerevisiae Using the HYAA Microfluidic Platform. Yu R; Jo MC; Dang W Methods Mol Biol; 2020; 2144():1-6. PubMed ID: 32410020 [TBL] [Abstract][Full Text] [Related]
9. Single cell analysis of yeast replicative aging using a new generation of microfluidic device. Zhang Y; Luo C; Zou K; Xie Z; Brandman O; Ouyang Q; Li H PLoS One; 2012; 7(11):e48275. PubMed ID: 23144860 [TBL] [Abstract][Full Text] [Related]
10. High-throughput analysis of yeast replicative aging using a microfluidic system. Jo MC; Liu W; Gu L; Dang W; Qin L Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9364-9. PubMed ID: 26170317 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of Microfluidic Devices for Continuously Monitoring Yeast Aging. O'Laughlin R; Forrest E; Hasty J; Hao N Bio Protoc; 2023 Aug; 13(15):e4782. PubMed ID: 37575396 [TBL] [Abstract][Full Text] [Related]
12. 3D-printed microfluidic microdissector for high-throughput studies of cellular aging. Spivey EC; Xhemalce B; Shear JB; Finkelstein IJ Anal Chem; 2014 Aug; 86(15):7406-12. PubMed ID: 24992972 [TBL] [Abstract][Full Text] [Related]
13. Using Microfluidic Devices to Measure Lifespan and Cellular Phenotypes in Single Budding Yeast Cells. Zou K; Ren DS; Ou-Yang Q; Li H; Zheng J J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448036 [TBL] [Abstract][Full Text] [Related]
14. Daughters of the budding yeast from old mothers have shorter replicative lifespans but not total lifespans. Are DNA damage and rDNA instability the factors that determine longevity? Molon M; Panek A; Molestak E; Skoneczny M; Tchorzewski M; Wnuk M Cell Cycle; 2018; 17(10):1173-1187. PubMed ID: 29895191 [TBL] [Abstract][Full Text] [Related]
15. A Microfluidic Device for Massively Parallel, Whole-lifespan Imaging of Single Fission Yeast Cells. Jones SK; Spivey EC; Rybarski JR; Finkelstein IJ Bio Protoc; 2018 Apr; 8(7):. PubMed ID: 29770351 [TBL] [Abstract][Full Text] [Related]
16. A simple microfluidic platform to study age-dependent protein abundance and localization changes in Cabrera M; Novarina D; Rempel IL; Veenhoff LM; Chang M Microb Cell; 2017 Apr; 4(5):169-174. PubMed ID: 28685142 [TBL] [Abstract][Full Text] [Related]
17. An aging-independent replicative lifespan in a symmetrically dividing eukaryote. Spivey EC; Jones SK; Rybarski JR; Saifuddin FA; Finkelstein IJ Elife; 2017 Jan; 6():. PubMed ID: 28139976 [TBL] [Abstract][Full Text] [Related]
18. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells. Geng Y; Zhu Z; Zhang Z; Xu F; Marchisio MA; Wang Z; Pan D; Zhao X; Huang QA Electrophoresis; 2021 Oct; 42(20):1996-2009. PubMed ID: 33938013 [TBL] [Abstract][Full Text] [Related]