These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22421310)

  • 1. Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores.
    Yook SW; Jung HD; Park CH; Shin KH; Koh YH; Estrin Y; Kim HE
    Acta Biomater; 2012 Jul; 8(6):2401-10. PubMed ID: 22421310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic freeze casting for the production of porous titanium (Ti) scaffolds.
    Jung HD; Yook SW; Jang TS; Li Y; Kim HE; Koh YH
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):59-63. PubMed ID: 25428042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method.
    Macchetta A; Turner IG; Bowen CR
    Acta Biomater; 2009 May; 5(4):1319-27. PubMed ID: 19112055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications.
    Landi E; Valentini F; Tampieri A
    Acta Biomater; 2008 Nov; 4(6):1620-6. PubMed ID: 18579459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering.
    Deville S; Saiz E; Tomsia AP
    Biomaterials; 2006 Nov; 27(32):5480-9. PubMed ID: 16857254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and properties of porous Ti-10Mo alloy by selective laser sintering.
    Xie F; He X; Lu X; Cao S; Qu X
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1085-90. PubMed ID: 23827546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer.
    Kim SW; Jung HD; Kang MH; Kim HE; Koh YH; Estrin Y
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2808-15. PubMed ID: 23623100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically structured titanium foams for tissue scaffold applications.
    Singh R; Lee PD; Jones JR; Poologasundarampillai G; Post T; Lindley TC; Dashwood RJ
    Acta Biomater; 2010 Dec; 6(12):4596-604. PubMed ID: 20601241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology.
    Chen H; Wang C; Zhu X; Zhang K; Fan Y; Zhang X
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():182-8. PubMed ID: 25175203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lamellar structure/processing relationships and compressive properties of porous Ti6Al4V alloys fabricated by freeze casting.
    Li F; Xue X; Jia T; Dang W; Zhao K; Tang Y
    J Mech Behav Biomed Mater; 2020 Jan; 101():103424. PubMed ID: 31514056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous titanium materials with entangled wire structure for load-bearing biomedical applications.
    He G; Liu P; Tan Q
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of freezing conditions on β-Tricalcium Phosphate /Camphene scaffold with micro sized particles fabricated by freeze casting.
    Singh G; Soundarapandian S
    J Mech Behav Biomed Mater; 2018 Mar; 79():189-194. PubMed ID: 29306082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting.
    Yan L; Wu J; Zhang L; Liu X; Zhou K; Su B
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():335-340. PubMed ID: 28415469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM).
    Parthasarathy J; Starly B; Raman S; Christensen A
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure.
    Zhang L; Le Coz-Botrel R; Beddoes C; Sjöström T; Su B
    Biomed Mater; 2017 Jan; 12(1):015014. PubMed ID: 28094241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics.
    Zhang Y; Zhou K; Bao Y; Zhang D
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):340-6. PubMed ID: 25428079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering.
    Jiang X; Yu F; Wang Z; Li J; Tan H; Ding M; Fu Q
    J Biomater Sci Polym Ed; 2010; 21(12):1637-52. PubMed ID: 20537246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    Biomed Mater; 2008 Jun; 3(2):025005. PubMed ID: 18458369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.