These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 22421546)
21. Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells. King AD; Huang K; Rubbi L; Liu S; Wang CY; Wang Y; Pellegrini M; Fan G Cell Rep; 2016 Sep; 17(1):289-302. PubMed ID: 27681438 [TBL] [Abstract][Full Text] [Related]
22. The CaMV 35S enhancer has a function to change the histone modification state at insertion loci in Arabidopsis thaliana. Chen X; Huang H; Xu L J Plant Res; 2013 Nov; 126(6):841-6. PubMed ID: 23880941 [TBL] [Abstract][Full Text] [Related]
23. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Zentner GE; Tesar PJ; Scacheri PC Genome Res; 2011 Aug; 21(8):1273-83. PubMed ID: 21632746 [TBL] [Abstract][Full Text] [Related]
25. Genome-wide search for Zelda-like chromatin signatures identifies GAF as a pioneer factor in early fly development. Moshe A; Kaplan T Epigenetics Chromatin; 2017 Jul; 10(1):33. PubMed ID: 28676122 [TBL] [Abstract][Full Text] [Related]
26. The H3K36me2 methyltransferase NSD1 modulates H3K27ac at active enhancers to safeguard gene expression. Fang Y; Tang Y; Zhang Y; Pan Y; Jia J; Sun Z; Zeng W; Chen J; Yuan Y; Fang D Nucleic Acids Res; 2021 Jun; 49(11):6281-6295. PubMed ID: 34107030 [TBL] [Abstract][Full Text] [Related]
27. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Nord AS; Blow MJ; Attanasio C; Akiyama JA; Holt A; Hosseini R; Phouanenavong S; Plajzer-Frick I; Shoukry M; Afzal V; Rubenstein JL; Rubin EM; Pennacchio LA; Visel A Cell; 2013 Dec; 155(7):1521-31. PubMed ID: 24360275 [TBL] [Abstract][Full Text] [Related]
28. Discovering enhancers by mapping chromatin features in primary tissue. Bowman SK Genomics; 2015 Sep; 106(3):140-144. PubMed ID: 26079656 [TBL] [Abstract][Full Text] [Related]
29. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Bonn S; Zinzen RP; Girardot C; Gustafson EH; Perez-Gonzalez A; Delhomme N; Ghavi-Helm Y; Wilczyński B; Riddell A; Furlong EE Nat Genet; 2012 Jan; 44(2):148-56. PubMed ID: 22231485 [TBL] [Abstract][Full Text] [Related]
30. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters. Kumar V; Rayan NA; Muratani M; Lim S; Elanggovan B; Xin L; Lu T; Makhija H; Poschmann J; Lufkin T; Ng HH; Prabhakar S Genome Res; 2016 May; 26(5):612-23. PubMed ID: 26957309 [TBL] [Abstract][Full Text] [Related]
31. HDAC4 degradation during senescence unleashes an epigenetic program driven by AP-1/p300 at selected enhancers and super-enhancers. Di Giorgio E; Paluvai H; Dalla E; Ranzino L; Renzini A; Moresi V; Minisini M; Picco R; Brancolini C Genome Biol; 2021 May; 22(1):129. PubMed ID: 33966634 [TBL] [Abstract][Full Text] [Related]
32. The chromatin signatures of enhancers and their dynamic regulation. Barral A; Déjardin J Nucleus; 2023 Dec; 14(1):2160551. PubMed ID: 36602897 [TBL] [Abstract][Full Text] [Related]
33. Distinct enhancer signatures in the mouse gastrula delineate progressive cell fate continuum during embryo development. Yang X; Hu B; Liao J; Qiao Y; Chen Y; Qian Y; Feng S; Yu F; Dong J; Hou Y; Xu H; Wang R; Peng G; Li J; Tang F; Jing N Cell Res; 2019 Nov; 29(11):911-926. PubMed ID: 31591447 [TBL] [Abstract][Full Text] [Related]
34. MBD3 localizes at promoters, gene bodies and enhancers of active genes. Shimbo T; Du Y; Grimm SA; Dhasarathy A; Mav D; Shah RR; Shi H; Wade PA PLoS Genet; 2013; 9(12):e1004028. PubMed ID: 24385926 [TBL] [Abstract][Full Text] [Related]
35. Chromatin signatures of active enhancers. Spicuglia S; Vanhille L Nucleus; 2012 Mar; 3(2):126-31. PubMed ID: 22555596 [TBL] [Abstract][Full Text] [Related]
36. Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells. Zhang T; Zhang Z; Dong Q; Xiong J; Zhu B Genome Biol; 2020 Feb; 21(1):45. PubMed ID: 32085783 [TBL] [Abstract][Full Text] [Related]
37. The hyper-activation of transcriptional enhancers in breast cancer. Li QL; Wang DY; Ju LG; Yao J; Gao C; Lei PJ; Li LY; Zhao XL; Wu M Clin Epigenetics; 2019 Mar; 11(1):48. PubMed ID: 30867030 [TBL] [Abstract][Full Text] [Related]
38. Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding. Andrey G; Schöpflin R; Jerković I; Heinrich V; Ibrahim DM; Paliou C; Hochradel M; Timmermann B; Haas S; Vingron M; Mundlos S Genome Res; 2017 Feb; 27(2):223-233. PubMed ID: 27923844 [TBL] [Abstract][Full Text] [Related]
39. Histone ChIP-Seq identifies differential enhancer usage during chondrogenesis as critical for defining cell-type specificity. Cheung K; Barter MJ; Falk J; Proctor CJ; Reynard LN; Young DA FASEB J; 2020 Apr; 34(4):5317-5331. PubMed ID: 32058623 [TBL] [Abstract][Full Text] [Related]
40. Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity: Considering Quantitative Accessibility Changes between Different Regulatory States of an Enhancer Deconvolutes the Complex Relationship between Accessibility and Activity. Bozek M; Gompel N Bioessays; 2020 Apr; 42(4):e1900188. PubMed ID: 32142172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]