BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 22422629)

  • 21. Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice.
    Ostrowski LE; Yin W; Diggs PS; Rogers TD; O'Neal WK; Grubb BR
    Gene Ther; 2007 Oct; 14(20):1492-501. PubMed ID: 17637798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone deacetylase 3 represses HTLV-1 tax transcription.
    Villanueva R; Iglesias AH; Camelo S; Sanin LC; Gray SG; Dangond F
    Oncol Rep; 2006 Sep; 16(3):581-5. PubMed ID: 16865259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X; Eisman R; Xu J; Harsch AD; Mulberg AE; Bevins CL; Glick MC; Scanlin TF
    J Cell Physiol; 1996 Aug; 168(2):373-84. PubMed ID: 8707873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei.
    Zink D; Amaral MD; Englmann A; Lang S; Clarke LA; Rudolph C; Alt F; Luther K; Braz C; Sadoni N; Rosenecker J; Schindelhauer D
    J Cell Biol; 2004 Sep; 166(6):815-25. PubMed ID: 15364959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced microtubule acetylation in cystic fibrosis epithelial cells.
    Rymut SM; Harker A; Corey DA; Burgess JD; Sun H; Clancy JP; Kelley TJ
    Am J Physiol Lung Cell Mol Physiol; 2013 Sep; 305(6):L419-31. PubMed ID: 23873844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative stress causes IL8 promoter hyperacetylation in cystic fibrosis airway cell models.
    Bartling TR; Drumm ML
    Am J Respir Cell Mol Biol; 2009 Jan; 40(1):58-65. PubMed ID: 18635816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential contribution of cis-regulatory elements to higher order chromatin structure and expression of the CFTR locus.
    Yang R; Kerschner JL; Gosalia N; Neems D; Gorsic LK; Safi A; Crawford GE; Kosak ST; Leir SH; Harris A
    Nucleic Acids Res; 2016 Apr; 44(7):3082-94. PubMed ID: 26673704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-expressing cystic fibrosis transmembrane conductance regulator interacts with histone deacetylase 2 to promote the development of Ph+ leukemia through the HDAC2-mediated PTEN pathway.
    Yan T; Leng Y; Yang X; Gong Y; Sun H; Wang K; Xu W; Zheng Y; Naren D; Shi R
    Leuk Res; 2017 Jun; 57():9-19. PubMed ID: 28235656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a perinuclear positioning element in human subtelomeres that requires A-type lamins and CTCF.
    Ottaviani A; Schluth-Bolard C; Rival-Gervier S; Boussouar A; Rondier D; Foerster AM; Morere J; Bauwens S; Gazzo S; Callet-Bauchu E; Gilson E; Magdinier F
    EMBO J; 2009 Aug; 28(16):2428-36. PubMed ID: 19644448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription-dependent spatial arrangements of CFTR and conserved adjacent loci are not conserved in human and murine nuclei.
    Sadoni N; Targosz BS; Englmann A; Fesser S; Koch J; Schindelhauer D; Zink D
    Chromosoma; 2008 Aug; 117(4):381-97. PubMed ID: 18408947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A balance between activating and repressive histone modifications regulates cystic fibrosis transmembrane conductance regulator (CFTR) expression in vivo.
    Bergougnoux A; Rivals I; Liquori A; Raynal C; Varilh J; Magalhães M; Perez MJ; Bigi N; Des Georges M; Chiron R; Squalli-Houssaini AS; Claustres M; De Sario A
    Epigenetics; 2014 Jul; 9(7):1007-17. PubMed ID: 24782114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromatin Dynamics in the Regulation of CFTR Expression.
    Gosalia N; Harris A
    Genes (Basel); 2015 Jul; 6(3):543-58. PubMed ID: 26184320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lamins.
    Krohne G
    Methods Cell Biol; 2004; 78():573-96. PubMed ID: 15646632
    [No Abstract]   [Full Text] [Related]  

  • 34. Research progress in Lamins in malignant tumors.
    Deng H; Yu Z; Kang J; Qin J; Jiang X; Jiao Z
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2020 Dec; 45(12):1490-1498. PubMed ID: 33473008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correction: discovery of CTCF-sensitive cis-spliced fusion RNAs between adjacent genes in human prostate cells.
    Qin F; Song Z; Babiceanu M; Song Y; Facemire L; Singh R; Adli M; Li H
    PLoS Genet; 2015 Apr; 11(4):e1005161. PubMed ID: 25860022
    [No Abstract]   [Full Text] [Related]  

  • 36. Nuclear positioning: A matter of life.
    Bruno C
    Semin Cell Dev Biol; 2018 Oct; 82():1-2. PubMed ID: 29196203
    [No Abstract]   [Full Text] [Related]  

  • 37. Large-scale mapping of positional changes of hypoxia-responsive genes upon activation.
    Nakayama K; Shachar S; Finn EH; Sato H; Hirakawa A; Misteli T
    Mol Biol Cell; 2022 Jul; 33(8):ar72. PubMed ID: 35476603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Broad Spectrum of
    Crasto S; My I; Di Pasquale E
    Front Physiol; 2020; 11():761. PubMed ID: 32719615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histone methyltransferase activity programs nuclear peripheral genome positioning.
    See K; Kiseleva AA; Smith CL; Liu F; Li J; Poleshko A; Epstein JA
    Dev Biol; 2020 Oct; 466(1-2):90-98. PubMed ID: 32712024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Causes and consequences of nuclear gene positioning.
    Shachar S; Misteli T
    J Cell Sci; 2017 May; 130(9):1501-1508. PubMed ID: 28404786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.