These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22422841)

  • 1. Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection.
    Sun H; Guns T; Fierro AC; Thorrez L; Nijssen S; Marchal K
    Nucleic Acids Res; 2012 Jul; 40(12):e90. PubMed ID: 22422841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ModuleDigger: an itemset mining framework for the detection of cis-regulatory modules.
    Sun H; De Bie T; Storms V; Fu Q; Dhollander T; Lemmens K; Verstuyf A; De Moor B; Marchal K
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S30. PubMed ID: 19208131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets.
    Zhang S; Liang Y; Wang X; Su Z; Chen Y
    DNA Res; 2019 Jun; 26(3):231-242. PubMed ID: 30957858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-species de novo identification of cis-regulatory modules with GibbsModule: application to gene regulation in embryonic stem cells.
    Xie D; Cai J; Chia NY; Ng HH; Zhong S
    Genome Res; 2008 Aug; 18(8):1325-35. PubMed ID: 18490265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. INSECT: IN-silico SEarch for Co-occurring Transcription factors.
    Rohr CO; Parra RG; Yankilevich P; Perez-Castro C
    Bioinformatics; 2013 Nov; 29(22):2852-8. PubMed ID: 24008418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information.
    Ma X; Kulkarni A; Zhang Z; Xuan Z; Serfling R; Zhang MQ
    Nucleic Acids Res; 2012 Apr; 40(7):e50. PubMed ID: 22228832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CisMiner: genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining.
    Navarro C; Lopez FJ; Cano C; Garcia-Alcalde F; Blanco A
    PLoS One; 2014; 9(9):e108065. PubMed ID: 25268582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs.
    Girgis HZ; Ovcharenko I
    BMC Bioinformatics; 2012 Feb; 13():25. PubMed ID: 22313678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring direct DNA binding from ChIP-seq.
    Bailey TL; Machanick P
    Nucleic Acids Res; 2012 Sep; 40(17):e128. PubMed ID: 22610855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Searching ChIP-seq genomic islands for combinatorial regulatory codes in mouse embryonic stem cells.
    Chen G; Zhou Q
    BMC Genomics; 2011 Oct; 12():515. PubMed ID: 22011333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imogene: identification of motifs and cis-regulatory modules underlying gene co-regulation.
    Rouault H; Santolini M; Schweisguth F; Hakim V
    Nucleic Acids Res; 2014 Jun; 42(10):6128-45. PubMed ID: 24682824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic and genomic regulatory elements reveal aspects of
    King DM; Hong CKY; Shepherdson JL; Granas DM; Maricque BB; Cohen BA
    Elife; 2020 Feb; 9():. PubMed ID: 32043966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MEME-ChIP: motif analysis of large DNA datasets.
    Machanick P; Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1696-7. PubMed ID: 21486936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression.
    Blanchette M; Bataille AR; Chen X; Poitras C; Laganière J; Lefèbvre C; Deblois G; Giguère V; Ferretti V; Bergeron D; Coulombe B; Robert F
    Genome Res; 2006 May; 16(5):656-68. PubMed ID: 16606704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MOPAT: a graph-based method to predict recurrent cis-regulatory modules from known motifs.
    Hu J; Hu H; Li X
    Nucleic Acids Res; 2008 Aug; 36(13):4488-97. PubMed ID: 18606616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the genome with an integrative analysis tool: combinatorial CRM Decoder.
    Kang K; Kim J; Chung JH; Lee D
    Nucleic Acids Res; 2011 Sep; 39(17):e116. PubMed ID: 21724599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cisMEP: an integrated repository of genomic epigenetic profiles and cis-regulatory modules in Drosophila.
    Yang TH; Wang CC; Hung PC; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S8. PubMed ID: 25521507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of context-dependent motifs by contrasting ChIP binding data.
    Mason MJ; Plath K; Zhou Q
    Bioinformatics; 2010 Nov; 26(22):2826-32. PubMed ID: 20870645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.