These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 22422887)

  • 21. TAM receptors are dispensable in the phagocytosis and killing of bacteria.
    Williams JC; Craven RR; Earp HS; Kawula TH; Matsushima GK
    Cell Immunol; 2009; 259(2):128-34. PubMed ID: 19625016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complement Component C1q Programs a Pro-Efferocytic Phenotype while Limiting TNFα Production in Primary Mouse and Human Macrophages.
    Hulsebus HJ; O'Conner SD; Smith EM; Jie C; Bohlson SS
    Front Immunol; 2016; 7():230. PubMed ID: 27379094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prolonged apoptotic cell accumulation in germinal centers of Mer-deficient mice causes elevated B cell and CD4+ Th cell responses leading to autoantibody production.
    Khan TN; Wong EB; Soni C; Rahman ZS
    J Immunol; 2013 Feb; 190(4):1433-46. PubMed ID: 23319738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phagocytosis and clearance of apoptotic cells is mediated by MER.
    Scott RS; McMahon EJ; Pop SM; Reap EA; Caricchio R; Cohen PL; Earp HS; Matsushima GK
    Nature; 2001 May; 411(6834):207-11. PubMed ID: 11346799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells.
    Benoit ME; Clarke EV; Morgado P; Fraser DA; Tenner AJ
    J Immunol; 2012 Jun; 188(11):5682-93. PubMed ID: 22523386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Murine CD93 (C1qRp) contributes to the removal of apoptotic cells in vivo but is not required for C1q-mediated enhancement of phagocytosis.
    Norsworthy PJ; Fossati-Jimack L; Cortes-Hernandez J; Taylor PR; Bygrave AE; Thompson RD; Nourshargh S; Walport MJ; Botto M
    J Immunol; 2004 Mar; 172(6):3406-14. PubMed ID: 15004139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages.
    Nishi C; Toda S; Segawa K; Nagata S
    Mol Cell Biol; 2014 Apr; 34(8):1512-20. PubMed ID: 24515440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsic unresponsiveness of Mertk-/- B cells to chronic graft-versus-host disease is associated with unmodulated CD1d expression.
    Shao WH; Zhen Y; Finkelman FD; Eisenberg RA; Cohen PL
    J Autoimmun; 2012 Dec; 39(4):412-9. PubMed ID: 22854104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SIGN-R1, a C-type lectin, enhances apoptotic cell clearance through the complement deposition pathway by interacting with C1q in the spleen.
    Prabagar MG; Do Y; Ryu S; Park JY; Choi HJ; Choi WS; Yun TJ; Moon J; Choi IS; Ko K; Ko K; Young Shin C; Cheong C; Kang YS
    Cell Death Differ; 2013 Apr; 20(4):535-45. PubMed ID: 23238564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Innate immune proteins C1q and mannan-binding lectin enhance clearance of atherogenic lipoproteins by human monocytes and macrophages.
    Fraser DA; Tenner AJ
    J Immunol; 2010 Oct; 185(7):3932-9. PubMed ID: 20833838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autophosphorylation docking site Tyr-867 in Mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-kappaB transcriptional activation.
    Tibrewal N; Wu Y; D'mello V; Akakura R; George TC; Varnum B; Birge RB
    J Biol Chem; 2008 Feb; 283(6):3618-3627. PubMed ID: 18039660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells.
    Dransfield I; Zagórska A; Lew ED; Michail K; Lemke G
    Cell Death Dis; 2015 Feb; 6(2):e1646. PubMed ID: 25695599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells.
    Ogden CA; deCathelineau A; Hoffmann PR; Bratton D; Ghebrehiwet B; Fadok VA; Henson PM
    J Exp Med; 2001 Sep; 194(6):781-95. PubMed ID: 11560994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel role for c-Src and STAT3 in apoptotic cell-mediated MerTK-dependent immunoregulation of dendritic cells.
    Yi Z; Li L; Matsushima GK; Earp HS; Wang B; Tisch R
    Blood; 2009 Oct; 114(15):3191-8. PubMed ID: 19667404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The clearance of apoptotic cells: implications for autoimmunity.
    Pittoni V; Valesini G
    Autoimmun Rev; 2002 May; 1(3):154-61. PubMed ID: 12849009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mer receptor tyrosine kinase signaling: prevention of apoptosis and alteration of cytoskeletal architecture without stimulation or proliferation.
    Guttridge KL; Luft JC; Dawson TL; Kozlowska E; Mahajan NP; Varnum B; Earp HS
    J Biol Chem; 2002 Jul; 277(27):24057-66. PubMed ID: 11929866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retinal pigment epithelial cells use a MerTK-dependent mechanism to limit the phagocytic particle binding activity of αvβ5 integrin.
    Nandrot EF; Silva KE; Scelfo C; Finnemann SC
    Biol Cell; 2012 Jun; 104(6):326-41. PubMed ID: 22289110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis.
    Zhang S; Yeap XY; Grigoryeva L; Dehn S; DeBerge M; Tye M; Rostlund E; Schrijvers D; Zhang ZJ; Sumagin R; Tourtellotte WG; Lee D; Lomasney J; Morrow J; Thorp EB
    J Mol Cell Cardiol; 2015 Oct; 87():171-9. PubMed ID: 26316303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The regulatory roles of C1q.
    Lu J; Wu X; Teh BK
    Immunobiology; 2007; 212(4-5):245-52. PubMed ID: 17544810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Initiators of Classical and Lectin Complement Pathways Are Differently Engaged after Traumatic Brain Injury-Time-Dependent Changes in the Cortex, Striatum, Thalamus and Hippocampus in a Mouse Model.
    Ciechanowska A; Ciapała K; Pawlik K; Oggioni M; Mercurio D; De Simoni MG; Mika J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.