These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 22422976)

  • 1. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial.
    Scalari G; Maissen C; Turcinková D; Hagenmüller D; De Liberato S; Ciuti C; Reichl C; Schuh D; Wegscheider W; Beck M; Faist J
    Science; 2012 Mar; 335(6074):1323-6. PubMed ID: 22422976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sculpting ultrastrong light-matter coupling through spatial matter structuring.
    Mornhinweg J; Diebel L; Halbhuber M; Riepl J; Cortese E; De Liberato S; Bougeard D; Huber R; Lange C
    Nanophotonics; 2024 Apr; 13(10):1909-1915. PubMed ID: 38681678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Few-Electron Ultrastrong Light-Matter Coupling at 300 GHz with Nanogap Hybrid LC Microcavities.
    Keller J; Scalari G; Cibella S; Maissen C; Appugliese F; Giovine E; Leoni R; Beck M; Faist J
    Nano Lett; 2017 Dec; 17(12):7410-7415. PubMed ID: 29172537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical Detection of Ultrastrong Coherent Interaction between Terahertz Fields and Electrons Using Quantum Point Contacts.
    Kuroyama K; Kwoen J; Arakawa Y; Hirakawa K
    Nano Lett; 2023 Dec; 23(24):11402-11408. PubMed ID: 37910773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlocal collective ultrastrong interaction of plasmonic metamaterials and photons in a terahertz photonic crystal cavity.
    Meng F; Thomson MD; Klug B; Čibiraitė D; Ul-Islam Q; Roskos HG
    Opt Express; 2019 Aug; 27(17):24455-24468. PubMed ID: 31510334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity QED of the graphene cyclotron transition.
    Hagenmüller D; Ciuti C
    Phys Rev Lett; 2012 Dec; 109(26):267403. PubMed ID: 23368618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz Light-Matter Interaction beyond Unity Coupling Strength.
    Bayer A; Pozimski M; Schambeck S; Schuh D; Huber R; Bougeard D; Lange C
    Nano Lett; 2017 Oct; 17(10):6340-6344. PubMed ID: 28937772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuum degeneracy of a circuit QED system in the ultrastrong coupling regime.
    Nataf P; Ciuti C
    Phys Rev Lett; 2010 Jan; 104(2):023601. PubMed ID: 20366594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity Quantum Electrodynamics with Hyperbolic van der Waals Materials.
    Ashida Y; İmamoğlu A; Demler E
    Phys Rev Lett; 2023 May; 130(21):216901. PubMed ID: 37295119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of a quantum metamaterial using superconducting qubits.
    Macha P; Oelsner G; Reiner JM; Marthaler M; André S; Schön G; Hübner U; Meyer HG; Il'ichev E; Ustinov AV
    Nat Commun; 2014 Oct; 5():5146. PubMed ID: 25312205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions.
    Baranov DG; Munkhbat B; Zhukova E; Bisht A; Canales A; Rousseaux B; Johansson G; Antosiewicz TJ; Shegai T
    Nat Commun; 2020 Jun; 11(1):2715. PubMed ID: 32483151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastrong light-matter coupling regime with polariton dots.
    Todorov Y; Andrews AM; Colombelli R; De Liberato S; Ciuti C; Klang P; Strasser G; Sirtori C
    Phys Rev Lett; 2010 Nov; 105(19):196402. PubMed ID: 21231188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime.
    Stassi R; Ridolfo A; Di Stefano O; Hartmann MJ; Savasta S
    Phys Rev Lett; 2013 Jun; 110(24):243601. PubMed ID: 25165920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of strong coupling between one atom and a monolithic microresonator.
    Aoki T; Dayan B; Wilcut E; Bowen WP; Parkins AS; Kippenberg TJ; Vahala KJ; Kimble HJ
    Nature; 2006 Oct; 443(7112):671-4. PubMed ID: 17035998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of terahertz plasmon and plasmon-polariton splitting in a grating-coupled AlGaN/GaN heterostructure.
    Yu Y; Zheng Z; Qin H; Sun J; Huang Y; Li X; Zhang Z; Wu D; Cai Y; Zhang B; Popov VV
    Opt Express; 2018 Nov; 26(24):31794-31807. PubMed ID: 30650759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.