These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 22422977)

  • 61. Superelastic Few-Layer Carbon Foam Made from Natural Cotton for All-Solid-State Electrochemical Capacitors.
    Lin T; Liu F; Xu F; Bi H; Du Y; Tang Y; Huang F
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25306-12. PubMed ID: 26517402
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Etching holes in graphene supercapacitor electrodes for faster performance.
    Ervin MH
    Nanotechnology; 2015 Jun; 26(23):234003. PubMed ID: 25994042
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.
    Kim TY; Lee HW; Stoller M; Dreyer DR; Bielawski CW; Ruoff RS; Suh KS
    ACS Nano; 2011 Jan; 5(1):436-42. PubMed ID: 21142183
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors.
    Feng J; Sun X; Wu C; Peng L; Lin C; Hu S; Yang J; Xie Y
    J Am Chem Soc; 2011 Nov; 133(44):17832-8. PubMed ID: 21951158
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ionic Liquids as Environmentally Benign Electrolytes for High-Performance Supercapacitors.
    Shahzad S; Shah A; Kowsari E; Iftikhar FJ; Nawab A; Piro B; Akhter MS; Rana UA; Zou Y
    Glob Chall; 2019 Jan; 3(1):1800023. PubMed ID: 31565352
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Scalable fabrication of high-performance and flexible graphene strain sensors.
    Tian H; Shu Y; Cui YL; Mi WT; Yang Y; Xie D; Ren TL
    Nanoscale; 2014 Jan; 6(2):699-705. PubMed ID: 24281713
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures.
    Chen W; Yan L
    Nanoscale; 2011 Aug; 3(8):3132-7. PubMed ID: 21698339
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nanostructured ruthenium oxide electrodes via high-temperature molecular templating for use in electrochemical capacitors.
    Brumbach MT; Alam TM; Kotula PG; McKenzie BB; Bunker BC
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):778-87. PubMed ID: 20356281
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage.
    Yang X; Cheng C; Wang Y; Qiu L; Li D
    Science; 2013 Aug; 341(6145):534-7. PubMed ID: 23908233
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.
    Liu R; Duay J; Lane T; Bok Lee S
    Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage.
    Lin T; Chen IW; Liu F; Yang C; Bi H; Xu F; Huang F
    Science; 2015 Dec; 350(6267):1508-13. PubMed ID: 26680194
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress.
    Li X; Rong J; Wei B
    ACS Nano; 2010 Oct; 4(10):6039-49. PubMed ID: 20828214
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors.
    Su CY; Xu Y; Zhang W; Zhao J; Liu A; Tang X; Tsai CH; Huang Y; Li LJ
    ACS Nano; 2010 Sep; 4(9):5285-92. PubMed ID: 20718442
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures.
    Esqueda-Barrón Y; Pérez Del Pino A; Lebière PG; Musheghyan-Avetisyan A; Bertran-Serra E; György E; Logofatu C
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17957-17970. PubMed ID: 33843185
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A review of electrolyte materials and compositions for electrochemical supercapacitors.
    Zhong C; Deng Y; Hu W; Qiao J; Zhang L; Zhang J
    Chem Soc Rev; 2015 Nov; 44(21):7484-539. PubMed ID: 26050756
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells.
    Yin Z; Wu S; Zhou X; Huang X; Zhang Q; Boey F; Zhang H
    Small; 2010 Jan; 6(2):307-12. PubMed ID: 20039255
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.
    Hou J; Shao Y; Ellis MW; Moore RB; Yi B
    Phys Chem Chem Phys; 2011 Sep; 13(34):15384-402. PubMed ID: 21799983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.