BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22422989)

  • 1. Acetylation: a novel link between double-strand break repair and autophagy.
    Shubassi G; Robert T; Vanoli F; Minucci S; Foiani M
    Cancer Res; 2012 Mar; 72(6):1332-5. PubMed ID: 22422989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HDACs link the DNA damage response, processing of double-strand breaks and autophagy.
    Robert T; Vanoli F; Chiolo I; Shubassi G; Bernstein KA; Rothstein R; Botrugno OA; Parazzoli D; Oldani A; Minucci S; Foiani M
    Nature; 2011 Mar; 471(7336):74-79. PubMed ID: 21368826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular pathways: old drugs define new pathways: non-histone acetylation at the crossroads of the DNA damage response and autophagy.
    Botrugno OA; Robert T; Vanoli F; Foiani M; Minucci S
    Clin Cancer Res; 2012 May; 18(9):2436-42. PubMed ID: 22512979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular biology: The expanding arena of DNA repair.
    Potenski CJ; Klein HL
    Nature; 2011 Mar; 471(7336):48-9. PubMed ID: 21368822
    [No Abstract]   [Full Text] [Related]  

  • 5. Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation.
    Chen CS; Wang YC; Yang HC; Huang PH; Kulp SK; Yang CC; Lu YS; Matsuyama S; Chen CY; Chen CS
    Cancer Res; 2007 Jun; 67(11):5318-27. PubMed ID: 17545612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does acetylation regulate autophagy?
    Yi C; Yu L
    Autophagy; 2012 Oct; 8(10):1529-30. PubMed ID: 22732483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interstrand Crosslink Repair as a Target for HDAC Inhibition.
    Nikolova T; Kiweler N; Krämer OH
    Trends Pharmacol Sci; 2017 Sep; 38(9):822-836. PubMed ID: 28687272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair.
    Sharma GG; So S; Gupta A; Kumar R; Cayrou C; Avvakumov N; Bhadra U; Pandita RK; Porteus MH; Chen DJ; Cote J; Pandita TK
    Mol Cell Biol; 2010 Jul; 30(14):3582-95. PubMed ID: 20479123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of valproic acid-initiated homologous recombination.
    Sha K; Winn LM
    Birth Defects Res B Dev Reprod Toxicol; 2010 Apr; 89(2):124-32. PubMed ID: 20437471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of type I histone deacetylase increases resistance of checkpoint-deficient cells to genotoxic agents through mitotic delay.
    Alao JP; Olesch J; Sunnerhagen P
    Mol Cancer Ther; 2009 Sep; 8(9):2606-15. PubMed ID: 19723888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Effect of Class I Histone Deacetylase Activity on DNA Double-Strand Break Repair by Homologous Recombination.
    Krumm A; Roos WP
    Methods Mol Biol; 2017; 1510():115-123. PubMed ID: 27761817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair.
    Tamburini BA; Tyler JK
    Mol Cell Biol; 2005 Jun; 25(12):4903-13. PubMed ID: 15923609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid.
    Muñoz-Galván S; Jimeno S; Rothstein R; Aguilera A
    PLoS Genet; 2013; 9(1):e1003237. PubMed ID: 23357952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin.
    Robert C; Nagaria PK; Pawar N; Adewuyi A; Gojo I; Meyers DJ; Cole PA; Rassool FV
    Leuk Res; 2016 Jun; 45():14-23. PubMed ID: 27064363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity.
    Wang SH; Lin PY; Chiu YC; Huang JS; Kuo YT; Wu JC; Chen CC
    PLoS One; 2015; 10(7):e0134110. PubMed ID: 26218133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance.
    Krumm A; Barckhausen C; Kücük P; Tomaszowski KH; Loquai C; Fahrer J; Krämer OH; Kaina B; Roos WP
    Cancer Res; 2016 May; 76(10):3067-77. PubMed ID: 26980768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast.
    Tao R; Chen H; Gao C; Xue P; Yang F; Han JD; Zhou B; Chen YG
    Cell Res; 2011 Nov; 21(11):1619-33. PubMed ID: 21467995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiosensitization of yeast cells by inhibition of histone h4 acetylation.
    Song S; McCann KE; Brown JM
    Radiat Res; 2008 Nov; 170(5):618-627. PubMed ID: 18959465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Class I histone deacetylase inhibitors inhibit the retention of BRCA1 and 53BP1 at the site of DNA damage.
    Fukuda T; Wu W; Okada M; Maeda I; Kojima Y; Hayami R; Miyoshi Y; Tsugawa K; Ohta T
    Cancer Sci; 2015 Aug; 106(8):1050-6. PubMed ID: 26053117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the Mre11-Rad50-Nbs1 complex in double-strand break repair-facts and myths.
    Takeda S; Hoa NN; Sasanuma H
    J Radiat Res; 2016 Aug; 57 Suppl 1(Suppl 1):i25-i32. PubMed ID: 27311583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.