These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22423150)

  • 1. Identification of "ever-cropped" land (1984-2010) using Landsat annual maximum NDVI image composites: Southwestern Kansas case study.
    Maxwell SK; Sylvester KM
    Remote Sens Environ; 2012 Jun; 121():186-195. PubMed ID: 22423150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data].
    Taddei R
    Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of land cover/use changes using Landsat 5 TM data and indices.
    Ettehadi Osgouei P; Kaya S
    Environ Monit Assess; 2017 Apr; 189(4):136. PubMed ID: 28251451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Landsat and Land-Based Phenology Camera Normalized Difference Vegetation Index (NDVI) for Dominant Plant Communities in the Great Basin.
    Snyder KA; Huntington JL; Wehan BL; Morton CG; Stringham TK
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30845746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing NDVI and land surface temperature for cloud cover pixels of Landsat-8 images for assessing vegetation health index in the Northeast region of Thailand.
    Mohanasundaram S; Baghel T; Thakur V; Udmale P; Shrestha S
    Environ Monit Assess; 2022 Dec; 195(1):211. PubMed ID: 36534216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity.
    Roy DP; Kovalskyy V; Zhang HK; Vermote EF; Yan L; Kumar SS; Egorov A
    Remote Sens Environ; 2016 Jan; Volume 185(Iss 1):57-70. PubMed ID: 32020954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau].
    Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y
    Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The association between the incidence of Lyme disease in the USA and indicators of greenness and land cover.
    Westra S; Goldberg MS; Didan K
    Curr Res Parasitol Vector Borne Dis; 2023; 4():100132. PubMed ID: 37520741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term Satellite NDVI Data Sets: Evaluating Their Ability to Detect Ecosystem Functional Changes in South America.
    Baldi G; Nosetto MD; Aragón R; Aversa F; Paruelo JM; Jobbágy EG
    Sensors (Basel); 2008 Sep; 8(9):5397-5425. PubMed ID: 27873821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Landsat satellite data to support pesticide exposure assessment in California.
    Maxwell SK; Airola M; Nuckols JR
    Int J Health Geogr; 2010 Sep; 9():46. PubMed ID: 20846438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Spatial-Resolution NDVI Reconstruction with GA-ANN.
    Zhao Y; Hou P; Jiang J; Zhao J; Chen Y; Zhai J
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annual satellite-based NDVI-derived land cover of Europe for 2001-2019.
    Verhoeven VB; Dedoussi IC
    J Environ Manage; 2022 Jan; 302(Pt A):113917. PubMed ID: 34700090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GEO-CEOS stage 4 validation of the Satellite Image Automatic Mapper lightweight computer program for ESA Earth observation level 2 product generation - Part 2: Validation.
    Baraldi A; Humber ML; Tiede D; Lang S
    Cogent Geosci; 2018; 4(1):1467254. PubMed ID: 30035157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GEO-CEOS stage 4 validation of the Satellite Image Automatic Mapper lightweight computer program for ESA Earth observation level 2 product generation - Part 1: Theory.
    Baraldi A; Humber ML; Tiede D; Lang S
    Cogent Geosci; 2018; 4(1):1-46. PubMed ID: 30035156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Land Cover Classification by Integrating NDVI Time Series and GIS Data to Evaluate Water Circulation in Aso Caldera, Japan.
    Amano H; Iwasaki Y
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32927907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring forest dynamics with multi-scale and time series imagery.
    Huang C; Zhou Z; Wang D; Dian Y
    Environ Monit Assess; 2016 May; 188(5):273. PubMed ID: 27056478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scene selection and the use of NASA's global orthorectified Landsat dataset for land cover and land use change monitoring.
    Tatem AJ; Nayar A; Hay SI
    Int J Remote Sens; 2007 Feb; 27(14):3073-3078. PubMed ID: 21994469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe.
    Erasmi S; Klinge M; Dulamsuren C; Schneider F; Hauck M
    Environ Monit Assess; 2021 Mar; 193(4):200. PubMed ID: 33738573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on changes in complex vegetation coverage using multi-temporal landsat data of Western Black Sea region--a case study.
    Coban HO; Koc A; Eker M
    J Environ Biol; 2010; 31(1-2):169-78. PubMed ID: 20648829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series.
    Caughlin TT; Barber C; Asner GP; Glenn NF; Bohlman SA; Wilson CH
    Ecol Appl; 2021 Jan; 31(1):e02208. PubMed ID: 32627902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.