These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22423549)

  • 1. Application of multiscale amplitude modulation features and fuzzy C-means to brain-computer interface.
    Hsu WY; Li YC; Hsu CY; Liu CT; Chiu HW
    Clin EEG Neurosci; 2012 Jan; 43(1):32-8. PubMed ID: 22423549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving classification accuracy using fuzzy method for BCI signals.
    Wei Y; Jun Y; Lin S; Hong L
    Biomed Mater Eng; 2014; 24(6):2937-43. PubMed ID: 25227000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-computer interface analysis using continuous wavelet transform and adaptive neuro-fuzzy classifier.
    Darvishi S; Al-Ani A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3220-3. PubMed ID: 18002681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studying the use of fuzzy inference systems for motor imagery classification.
    Fabien L; Anatole L; Fabrice L; Bruno A
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):322-4. PubMed ID: 17601202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A time-series prediction approach for feature extraction in a brain-computer interface.
    Coyle D; Prasad G; McGinnity TM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):461-7. PubMed ID: 16425827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification.
    Herman P; Prasad G; McGinnity TM; Coyle D
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):317-26. PubMed ID: 18701380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embedded grey relation theory in Hopfield neural network: application to motor imagery EEG recognition.
    Hsu WY
    Clin EEG Neurosci; 2013 Oct; 44(4):257-64. PubMed ID: 23536381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features.
    Hsu WY
    J Neurosci Methods; 2010 Jun; 189(2):295-302. PubMed ID: 20381529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces.
    Vidaurre C; Schlögl A; Cabeza R; Scherer R; Pfurtscheller G
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):550-6. PubMed ID: 17355071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of adaptive features with linear discriminant classifier for Brain computer Interfaces.
    Vidaurre C; Schlögl A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():173-6. PubMed ID: 19162621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor imagery EEG discrimination using the correlation of wavelet features.
    Hsu WY
    Clin EEG Neurosci; 2015 Apr; 46(2):94-9. PubMed ID: 24599891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of common spatial patterns with complex band power features in a four-class BCI experiment.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):642-51. PubMed ID: 16602570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications.
    Qin L; He B
    J Neural Eng; 2005 Dec; 2(4):65-72. PubMed ID: 16317229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive tracking of discriminative frequency components in electroencephalograms for a robust brain-computer interface.
    Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK
    J Neural Eng; 2011 Jun; 8(3):036007. PubMed ID: 21478575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of four-class motor imagery EEG data for the BCI-competition 2005.
    Schlögl A; Lee F; Bischof H; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):L14-22. PubMed ID: 16317224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parametric feature extraction and classification strategy for brain-computer interfacing.
    Burke DP; Kelly SP; de Chazal P; Reilly RB; Finucane C
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):12-7. PubMed ID: 15813401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces.
    Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2730-3. PubMed ID: 19605314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state movement related potentials for brain computer interfacing.
    Nazarpour K; Praamstra P; Miall R; Sanei S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5310-3. PubMed ID: 19163916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain-computer interface.
    Wang T; He B
    J Neural Eng; 2004 Mar; 1(1):1-7. PubMed ID: 15876616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.