These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22423639)

  • 1. Effect of iron concentration on the growth of carbon nanotubes on clay surface.
    Huakang F; Miao D; Qiang Z
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1981-9. PubMed ID: 22423639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the size and the activity of Fe particles for synthesis of carbon nanotubes.
    Chee SW; Sharma R
    Micron; 2012 Nov; 43(11):1181-7. PubMed ID: 22349468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition.
    Jodin L; Dupuis AC; Rouvière E; Reiss P
    J Phys Chem B; 2006 Apr; 110(14):7328-33. PubMed ID: 16599506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron changes in natural and Fe(III) loaded montmorillonite during carbon nanotube growth.
    Bakandritsos A; Simopoulos A; Petridis D
    Nanotechnology; 2006 Feb; 17(4):1112-7. PubMed ID: 21727389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system.
    Coquay P; Peigney A; De Grave E; Flahaut E; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17813-24. PubMed ID: 16853284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts.
    Ko JR; Ahn WS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of microwave plasma-assisted CVD on nanostructured iron catalysts to grow isolated bundles of carbon nanotubes.
    Assouar MB; Dossot M; Rizk S; Tiusan C; Bougdira J
    Nanotechnology; 2010 Feb; 21(6):065708. PubMed ID: 20057030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes.
    Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS
    Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts.
    Dunens OM; MacKenzie KJ; Harris AT
    Environ Sci Technol; 2009 Oct; 43(20):7889-94. PubMed ID: 19921910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanohybrids of magnetic iron-oxide particles in hydrophobic organoclays for oil recovery.
    Hsu RS; Chang WH; Lin JJ
    ACS Appl Mater Interfaces; 2010 May; 2(5):1349-54. PubMed ID: 20402492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferric ion adsorption and electrodesorption by carbon nanotubes and nanofibres films.
    Li H; Pan L; Zhang Y; Sun Z
    Water Sci Technol; 2009; 59(8):1657-63. PubMed ID: 19403980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous electrochemical dissolution and passivation of iron growth catalysts in carbon nanotubes.
    Lyon JL; Stevenson KJ
    Langmuir; 2007 Oct; 23(22):11311-8. PubMed ID: 17910488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 2. The CNT-Fe/Co-MgAl2O4 system.
    Coquay P; Flahaut E; De Grave E; Peigney A; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17825-30. PubMed ID: 16853285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates.
    Liu X; Bigioni TP; Xu Y; Cassell AM; Cruden BA
    J Phys Chem B; 2006 Oct; 110(41):20102-6. PubMed ID: 17034181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of Fe/MgO catalysts by calcination for the growth of single- and double-walled carbon nanotubes.
    Ning G; Wei F; Wen Q; Luo G; Wang Y; Jin Y
    J Phys Chem B; 2006 Jan; 110(3):1201-5. PubMed ID: 16471664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition.
    Yong Z; Fang L; Zhi-hua Z
    Micron; 2011 Aug; 42(6):547-52. PubMed ID: 21376608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor.
    Tian Y; Hu Z; Yang Y; Wang X; Chen X; Xu H; Wu Q; Ji W; Chen Y
    J Am Chem Soc; 2004 Feb; 126(4):1180-3. PubMed ID: 14746488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonaligned carbon nanotubes anchored on porous alumina: formation, process modeling, gas-phase analysis, and field-emission properties.
    Lysenkov D; Engstler J; Dangwal A; Popp A; Müller G; Schneider JJ; Janardhanan VM; Deutschmann O; Strauch P; Ebert V; Wolfrum J
    Small; 2007 Jun; 3(6):974-85. PubMed ID: 17514768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.