These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22423677)

  • 1. Cognitive process modelling of controllers in en route air traffic control.
    Inoue S; Furuta K; Nakata K; Kanno T; Aoyama H; Brown M
    Ergonomics; 2012; 55(4):450-64. PubMed ID: 22423677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and predicting mental workload in en route air traffic control: critical review and broader implications.
    Loft S; Sanderson P; Neal A; Mooij M
    Hum Factors; 2007 Jun; 49(3):376-99. PubMed ID: 17552304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Psychophysiological coherence training to moderate air traffic controllers' fatigue on rotating roster.
    Li WC; Zhang J; Kearney P
    Risk Anal; 2023 Feb; 43(2):391-404. PubMed ID: 35212002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human factors assessment of conflict resolution aid reliability and time pressure in future air traffic control.
    Trapsilawati F; Qu X; Wickens CD; Chen CH
    Ergonomics; 2015; 58(6):897-908. PubMed ID: 25600496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Difficulty to Break a Relational Complexity Network Can Predict Air Traffic Controllers' Mental Workload and Performance in Conflict Resolution.
    Zhang J; E X; Du F; Yang J; Loft S
    Hum Factors; 2021 Mar; 63(2):240-253. PubMed ID: 31618105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From trees to forest: relational complexity network and workload of air traffic controllers.
    Zhang J; Yang J; Wu C
    Ergonomics; 2015; 58(8):1320-36. PubMed ID: 25677762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An en route capacity optimization model based on air traffic control process.
    Ren J; Qu S; Wang L; Wang Y
    Math Biosci Eng; 2022 Feb; 19(4):4277-4299. PubMed ID: 35341298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative position vectors: an alternative approach to conflict detection in air traffic control.
    Vuckovic A; Sanderson P; Neal A; Gaukrodger S; Wong BL
    Hum Factors; 2013 Oct; 55(5):946-64. PubMed ID: 24218904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The controller, aviation medicine and air safety.
    Watkin BL
    Aviat Space Environ Med; 1983 Mar; 54(3):263-5. PubMed ID: 6847565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human performance interfaces in air traffic control.
    Chang YH; Yeh CH
    Appl Ergon; 2010 Jan; 41(1):123-9. PubMed ID: 19580957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensemaking perspective on framing the mental picture of air traffic controllers.
    Malakis S; Kontogiannis T
    Appl Ergon; 2013 Mar; 44(2):327-39. PubMed ID: 23044028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Procedural errors in air traffic control: effects of traffic density, expertise, and automation.
    Di Nocera F; Fabrizi R; Terenzi M; Ferlazzo F
    Aviat Space Environ Med; 2006 Jun; 77(6):639-43. PubMed ID: 16780243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mental workload in air traffic control: an index constructed from field tests.
    Averty P; Collet C; Dittmar A; Athènes S; Vernet-Maury E
    Aviat Space Environ Med; 2004 Apr; 75(4):333-41. PubMed ID: 15086123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive performance and electroencephalographic variations in air traffic controllers under various mental workload and time of day.
    Izadi Laybidi M; Rasoulzadeh Y; Dianat I; Samavati M; Asghari Jafarabadi M; Nazari MA
    Physiol Behav; 2022 Aug; 252():113842. PubMed ID: 35561808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air traffic controllers' long-term speech-in-noise training effects: A control group study.
    Zaballos MT; Plasencia DP; González ML; de Miguel AR; Macías ÁR
    Noise Health; 2016; 18(85):376-381. PubMed ID: 27991470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task difficulty and physiological measures of mental workload in air traffic control: a scoping review.
    Pagnotta M; Jacobs DM; de Frutos PL; Rodríguez R; Ibáñez-Gijón J; Travieso D
    Ergonomics; 2022 Aug; 65(8):1095-1118. PubMed ID: 34904533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Peak-End Effects in Air Traffic Controllers' Mental Workload Ratings.
    Qiao H; Zhang J; Zhang L; Li Y; Loft S
    Hum Factors; 2022 Dec; 64(8):1292-1305. PubMed ID: 33657905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on comprehensive evaluation system of occupational stress for air traffic controllers].
    Tang LH; Fang L; Dong Y; Xiong Y; Wang ZX; Zhang Q
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2020 Aug; 38(8):573-576. PubMed ID: 32892581
    [No Abstract]   [Full Text] [Related]  

  • 19. The effects of dynamic workload and experience on commercially available EEG cognitive state metrics in a high-fidelity air traffic control environment.
    Bernhardt KA; Poltavski D; Petros T; Ferraro FR; Jorgenson T; Carlson C; Drechsel P; Iseminger C
    Appl Ergon; 2019 May; 77():83-91. PubMed ID: 30832781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-the-fly scheduling as a manifestation of partial-order planning and dynamic task values.
    Hannah SD; Neal A
    Hum Factors; 2014 Sep; 56(6):1093-112. PubMed ID: 25277019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.