BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 22423990)

  • 1. Alanine, a Novel Growth Substrate for the Acetogenic Bacterium Acetobacterium woodii.
    Dönig J; Müller V
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30242008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product.
    Yang CL; Guan LL; Liu JX; Wang JK
    J Zhejiang Univ Sci B; 2015 Aug; 16(8):709-19. PubMed ID: 26238546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellobiose transport by mixed ruminal bacteria from a Cow.
    Kajikawa H; Masaki S
    Appl Environ Microbiol; 1999 Jun; 65(6):2565-9. PubMed ID: 10347044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refining and illuminating acetogenic Eubacterium strains for reclassification and metabolic engineering.
    Flaiz M; Poehlein A; Wilhelm W; Mook A; Daniel R; Dürre P; Bengelsdorf FR
    Microb Cell Fact; 2024 Jan; 23(1):24. PubMed ID: 38233843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational efficiency in gas-fermenting bacteria: Adding a new layer of regulation to gene expression in acetogens.
    Re A
    iScience; 2023 Dec; 26(12):108383. PubMed ID: 38034355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complete genome sequence of Eubacterium limosum SA11, a metabolically versatile rumen acetogen.
    Kelly WJ; Henderson G; Pacheco DM; Li D; Reilly K; Naylor GE; Janssen PH; Attwood GT; Altermann E; Leahy SC
    Stand Genomic Sci; 2016; 11():26. PubMed ID: 26981167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic analysis of the phosphotransferase system in Clostridium botulinum.
    Mitchell WJ; Tewatia P; Meaden PG
    J Mol Microbiol Biotechnol; 2007; 12(1-2):33-42. PubMed ID: 17183209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Sugar phosphorylation activities in acetogenic bacteria].
    Jiang W; Patterson JA
    Wei Sheng Wu Xue Bao; 1999 Dec; 39(6):539-45. PubMed ID: 12555560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of growth conditions on the Streptococcus bovis phosphoenolpyruvate glucose phosphotransferase system.
    Moore GA; Martin SA
    J Anim Sci; 1991 Dec; 69(12):4967-73. PubMed ID: 1808190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexose phosphorylation by the ruminal bacterium Selenomonas ruminantium.
    Martin SA
    J Dairy Sci; 1996 Apr; 79(4):550-6. PubMed ID: 8744219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell.
    Gabor E; Göhler AK; Kosfeld A; Staab A; Kremling A; Jahreis K
    Eur J Cell Biol; 2011 Sep; 90(9):711-20. PubMed ID: 21621292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar phosphorylation activity in ruminal acetogens.
    Jiang W; Pinder RS; Patterson JA; Ricke SC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):843-6. PubMed ID: 22423990
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.