These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 22424120)
1. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials. Basu A; Johnson TM Environ Sci Technol; 2012 May; 46(10):5353-60. PubMed ID: 22424120 [TBL] [Abstract][Full Text] [Related]
2. Chromium isotopes and the fate of hexavalent chromium in the environment. Ellis AS; Johnson TM; Bullen TD Science; 2002 Mar; 295(5562):2060-2. PubMed ID: 11896274 [TBL] [Abstract][Full Text] [Related]
3. Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling. Wanner C; Zink S; Eggenberger U; Mäder U J Contam Hydrol; 2012 Apr; 131(1-4):54-63. PubMed ID: 22343010 [TBL] [Abstract][Full Text] [Related]
4. Using stable isotope fractionation factors to identify Cr(VI) reduction pathways: Metal-mineral-microbe interactions. Zhang Q; Amor K; Galer SJG; Thompson I; Porcelli D Water Res; 2019 Mar; 151():98-109. PubMed ID: 30594094 [TBL] [Abstract][Full Text] [Related]
5. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Ellis AS; Johnson TM; Bullen TD Environ Sci Technol; 2004 Jul; 38(13):3604-7. PubMed ID: 15296311 [TBL] [Abstract][Full Text] [Related]
6. Reactive transport modeling of chromium isotope fractionation during Cr(VI) reduction. Jamieson-Hanes JH; Amos RT; Blowes DW Environ Sci Technol; 2012 Dec; 46(24):13311-6. PubMed ID: 23153412 [TBL] [Abstract][Full Text] [Related]
7. Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide. Wu L; Beard BL; Roden EE; Johnson CM Environ Sci Technol; 2011 Mar; 45(5):1847-52. PubMed ID: 21294566 [TBL] [Abstract][Full Text] [Related]
8. Chromium isotopic fractionation during Cr(VI) reduction by Bacillus sp. under aerobic conditions. Xu F; Ma T; Zhou L; Hu Z; Shi L Chemosphere; 2015 Jul; 130():46-51. PubMed ID: 25777078 [TBL] [Abstract][Full Text] [Related]
9. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy. Slejko FF; Petrini R; Lutman A; Forte C; Ghezzi L Isotopes Environ Health Stud; 2019 Mar; 55(1):56-69. PubMed ID: 30621468 [TBL] [Abstract][Full Text] [Related]
10. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol. Babechuk MG; Kleinhanns IC; Schoenberg R Geobiology; 2017 Jan; 15(1):30-50. PubMed ID: 27444369 [TBL] [Abstract][Full Text] [Related]
11. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296 [TBL] [Abstract][Full Text] [Related]
12. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions. Jeen SW; Blowes DW; Gillham RW J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283 [TBL] [Abstract][Full Text] [Related]
13. Chromium isotope fractionation during Cr(VI) reduction in a methane-based hollow-fiber membrane biofilm reactor. Lu YZ; Chen GJ; Bai YN; Fu L; Qin LP; Zeng RJ Water Res; 2018 Mar; 130():263-270. PubMed ID: 29241112 [TBL] [Abstract][Full Text] [Related]
14. Dual Mechanism Conceptual Model for Cr Isotope Fractionation during Reduction by Zerovalent Iron under Saturated Flow Conditions. Jamieson-Hanes JH; Amos RT; Blowes DW; Ptacek CJ Environ Sci Technol; 2015 May; 49(9):5467-75. PubMed ID: 25839086 [TBL] [Abstract][Full Text] [Related]
15. Two-stage chromium isotope fractionation during microbial Cr(VI) reduction. Chen G; Han J; Mu Y; Yu H; Qin L Water Res; 2019 Jan; 148():10-18. PubMed ID: 30343194 [TBL] [Abstract][Full Text] [Related]
16. Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. Field EK; Gerlach R; Viamajala S; Jennings LK; Peyton BM; Apel WA Biodegradation; 2013 Jun; 24(3):437-50. PubMed ID: 23135488 [TBL] [Abstract][Full Text] [Related]
17. Cr stable isotopes as indicators of Cr(VI) reduction in groundwater: a detailed time-series study of a point-source plume. Berna EC; Johnson TM; Makdisi RS; Basu A Environ Sci Technol; 2010 Feb; 44(3):1043-8. PubMed ID: 20039722 [TBL] [Abstract][Full Text] [Related]
18. Isotope fractionation and spectroscopic analysis as an evidence of Cr(VI) reduction during biosorption. Šillerová H; Chrastný V; Čadková E; Komárek M Chemosphere; 2014 Jan; 95():402-7. PubMed ID: 24139156 [TBL] [Abstract][Full Text] [Related]
19. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1. Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena. Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]