These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22424156)

  • 1. Exploring protein flexibility: incorporating structural ensembles from crystal structures and simulation into virtual screening protocols.
    Osguthorpe DJ; Sherman W; Hagler AT
    J Phys Chem B; 2012 Jun; 116(23):6952-9. PubMed ID: 22424156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering.
    Osguthorpe DJ; Sherman W; Hagler AT
    Chem Biol Drug Des; 2012 Aug; 80(2):182-93. PubMed ID: 22515569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sampling of conformational ensemble for virtual screening using molecular dynamics simulations and normal mode analysis.
    Moroy G; Sperandio O; Rielland S; Khemka S; Druart K; Goyal D; Perahia D; Miteva MA
    Future Med Chem; 2015; 7(17):2317-31. PubMed ID: 26599419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility.
    Tian S; Sun H; Pan P; Li D; Zhen X; Li Y; Hou T
    J Chem Inf Model; 2014 Oct; 54(10):2664-79. PubMed ID: 25233367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking.
    Strecker C; Meyer B
    J Chem Inf Model; 2018 May; 58(5):1121-1131. PubMed ID: 29683661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flexible-protein molecular docking study of the binding of ruthenium complex compounds to PIM1, GSK-3β, and CDK2/Cyclin A protein kinases.
    Liu Y; Agrawal NJ; Radhakrishnan R
    J Mol Model; 2013 Jan; 19(1):371-82. PubMed ID: 22926267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs.
    Tarcsay A; Paragi G; Vass M; Jójárt B; Bogár F; Keserű GM
    J Chem Inf Model; 2013 Nov; 53(11):2990-9. PubMed ID: 24116387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance drug discovery: computational screening by combining docking and molecular dynamics simulations.
    Okimoto N; Futatsugi N; Fuji H; Suenaga A; Morimoto G; Yanai R; Ohno Y; Narumi T; Taiji M
    PLoS Comput Biol; 2009 Oct; 5(10):e1000528. PubMed ID: 19816553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient molecular docking of NMR structures: application to HIV-1 protease.
    Huang SY; Zou X
    Protein Sci; 2007 Jan; 16(1):43-51. PubMed ID: 17123961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations.
    Dixit A; Verkhivker GM
    J Chem Inf Model; 2012 Oct; 52(10):2501-15. PubMed ID: 22992037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensemble-based docking using biased molecular dynamics.
    Campbell AJ; Lamb ML; Joseph-McCarthy D
    J Chem Inf Model; 2014 Jul; 54(7):2127-38. PubMed ID: 24881672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endocrine Disruption at the Androgen Receptor: Employing Molecular Dynamics and Docking for Improved Virtual Screening and Toxicity Prediction.
    Wahl J; Smieško M
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29914135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-ligand docking with multiple flexible side chains.
    Zhao Y; Sanner MF
    J Comput Aided Mol Des; 2008 Sep; 22(9):673-9. PubMed ID: 18034309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the effect of PARP-1 flexibility in docking studies.
    Antolin AA; Carotti A; Nuti R; Hakkaya A; Camaioni E; Mestres J; Pellicciari R; Macchiarulo A
    J Mol Graph Model; 2013 Sep; 45():192-201. PubMed ID: 24056306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ReFlexIn: a flexible receptor protein-ligand docking scheme evaluated on HIV-1 protease.
    Leis S; Zacharias M
    PLoS One; 2012; 7(10):e48008. PubMed ID: 23110159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand Binding Pathways and Conformational Transitions of the HIV Protease.
    Miao Y; Huang YM; Walker RC; McCammon JA; Chang CA
    Biochemistry; 2018 Mar; 57(9):1533-1541. PubMed ID: 29394043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic ligand-induced-fit simulation via enhanced conformational samplings and ensemble dockings: a survivin example.
    Park IH; Li C
    J Phys Chem B; 2010 Apr; 114(15):5144-53. PubMed ID: 20337446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyphony: superposition independent methods for ensemble-based drug discovery.
    Pitt WR; Montalvão RW; Blundell TL
    BMC Bioinformatics; 2014 Sep; 15(1):324. PubMed ID: 25265915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.