These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. Burdick J; Laocharoensuk R; Wheat PM; Posner JD; Wang J J Am Chem Soc; 2008 Jul; 130(26):8164-5. PubMed ID: 18533716 [TBL] [Abstract][Full Text] [Related]
4. Autonomous movement of controllable assembled Janus capsule motors. Wu Y; Wu Z; Lin X; He Q; Li J ACS Nano; 2012 Dec; 6(12):10910-6. PubMed ID: 23153409 [TBL] [Abstract][Full Text] [Related]
5. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors. Wu Y; Si T; Lin X; He Q Chem Commun (Camb); 2015 Jan; 51(3):511-4. PubMed ID: 25409875 [TBL] [Abstract][Full Text] [Related]
6. Motion-based, high-yielding, and fast separation of different charged organics in water. Xuan M; Lin X; Shao J; Dai L; He Q Chemphyschem; 2015 Jan; 16(1):147-51. PubMed ID: 25413002 [TBL] [Abstract][Full Text] [Related]
7. Organized self-assembly of Janus micromotors with hydrophobic hemispheres. Gao W; Pei A; Feng X; Hennessy C; Wang J J Am Chem Soc; 2013 Jan; 135(3):998-1001. PubMed ID: 23286304 [TBL] [Abstract][Full Text] [Related]
8. Active cargo transport with Janus colloidal shuttles using electric and magnetic fields. Demirörs AF; Akan MT; Poloni E; Studart AR Soft Matter; 2018 Jun; 14(23):4741-4749. PubMed ID: 29799053 [TBL] [Abstract][Full Text] [Related]
9. Control over Janus micromotors by the strength of a magnetic field. Baraban L; Makarov D; Schmidt OG; Cuniberti G; Leiderer P; Erbe A Nanoscale; 2013 Feb; 5(4):1332-6. PubMed ID: 23241852 [TBL] [Abstract][Full Text] [Related]
10. Integrated cell manipulation system--CMOS/microfluidic hybrid. Lee H; Liu Y; Ham D; Westervelt RM Lab Chip; 2007 Mar; 7(3):331-7. PubMed ID: 17330164 [TBL] [Abstract][Full Text] [Related]
11. Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization. Mohanty S Lab Chip; 2012 Oct; 12(19):3624-36. PubMed ID: 22899251 [TBL] [Abstract][Full Text] [Related]
13. Chemotactic behavior of catalytic motors in microfluidic channels. Baraban L; Harazim SM; Sanchez S; Schmidt OG Angew Chem Int Ed Engl; 2013 May; 52(21):5552-6. PubMed ID: 23616282 [No Abstract] [Full Text] [Related]
14. Colloidal transport on magnetic garnet films. Tierno P; Sagués F; Johansen TH; Fischer TM Phys Chem Chem Phys; 2009 Nov; 11(42):9615-25. PubMed ID: 19851538 [TBL] [Abstract][Full Text] [Related]
15. Motion of Enzyme-Powered Microshell Motors. Chen C; He Z; Wu J; Zhang X; Xia Q; Ju H Chem Asian J; 2019 Jul; 14(14):2491-2496. PubMed ID: 31087617 [TBL] [Abstract][Full Text] [Related]
16. Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip. Chen HM; Pang L; Gordon MS; Fainman Y Small; 2011 Oct; 7(19):2750-7. PubMed ID: 21842478 [TBL] [Abstract][Full Text] [Related]
17. Catalytic Janus Colloids: Controlling Trajectories of Chemical Microswimmers. Ebbens SJ; Gregory DA Acc Chem Res; 2018 Sep; 51(9):1931-1939. PubMed ID: 30070110 [TBL] [Abstract][Full Text] [Related]
18. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms. Cao Q; Han X; Li L Lab Chip; 2014 Aug; 14(15):2762-77. PubMed ID: 24903572 [TBL] [Abstract][Full Text] [Related]
19. Motility of catalytic nanoparticles through self-generated forces. Paxton WF; Sen A; Mallouk TE Chemistry; 2005 Nov; 11(22):6462-70. PubMed ID: 16052651 [TBL] [Abstract][Full Text] [Related]