BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 22424289)

  • 1. Efficient electroformation of supergiant unilamellar vesicles containing cationic lipids on ITO-coated electrodes.
    Herold C; Chwastek G; Schwille P; Petrov EP
    Langmuir; 2012 Apr; 28(13):5518-21. PubMed ID: 22424289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroformation of giant unilamellar vesicles in saline solution.
    Li Q; Wang X; Ma S; Zhang Y; Han X
    Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of electrical parameters on the electroformation of giant vesicles on ITO glass chips.
    Li W; Wang Q; Yang Z; Wang W; Cao Y; Hu N; Luo H; Liao Y; Yang J
    Colloids Surf B Biointerfaces; 2016 Apr; 140():560-566. PubMed ID: 26628330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions.
    Mikelj M; Praper T; Demič R; Hodnik V; Turk T; Anderluh G
    Anal Biochem; 2013 Apr; 435(2):174-80. PubMed ID: 23333270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous monitoring of electroformation of phospholipid vesicles by quartz crystal microbalance and optical microscopy.
    Niri VH; Flatt BK; Fakhraai Z; Forrest JA
    Chem Phys Lipids; 2010 Jan; 163(1):36-41. PubMed ID: 19883636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant unilamellar vesicle electroformation from lipid mixtures to native membranes under physiological conditions.
    Méléard P; Bagatolli LA; Pott T
    Methods Enzymol; 2009; 465():161-76. PubMed ID: 19913167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AC-electric field dependent electroformation of giant lipid vesicles.
    Politano TJ; Froude VE; Jing B; Zhu Y
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):75-82. PubMed ID: 20413284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of interaction between liposome membranes induced by stress condition: utilization of liposomes immobilized on indium tin oxide electrode.
    Ishii H; Shimanouchi T; Umakoshi H; Kuboi R
    J Biosci Bioeng; 2009 Nov; 108(5):425-8. PubMed ID: 19804868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cheap portable electroformed giant unilamellar vesicles preparation kit.
    Doğan Güzel F; Kaur J; Zendeh Z
    J Liposome Res; 2023 Jun; 33(2):183-188. PubMed ID: 36541743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the Electroformation of Giant Unilamellar Vesicles (GUVs) with Unsaturated Phospholipids.
    Breton M; Amirkavei M; Mir LM
    J Membr Biol; 2015 Oct; 248(5):827-35. PubMed ID: 26238509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions.
    Montes LR; Ahyayauch H; Ibarguren M; Sot J; Alonso A; Bagatolli LA; Goñi FM
    Methods Mol Biol; 2010; 606():105-14. PubMed ID: 20013393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroformation of phospholipid giant unilamellar vesicles in physiological phosphate buffer.
    Lefrançois P; Goudeau B; Arbault S
    Integr Biol (Camb); 2018 Jul; 10(7):429-434. PubMed ID: 29943778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of electroformation protocol parameters on quality of homogeneous GUV populations.
    Drabik D; Doskocz J; Przybyło M
    Chem Phys Lipids; 2018 May; 212():88-95. PubMed ID: 29408045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroformation of giant liposomes from spin-coated films of lipids.
    Estes DJ; Mayer M
    Colloids Surf B Biointerfaces; 2005 May; 42(2):115-23. PubMed ID: 15833662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry.
    Steinkühler J; De Tillieux P; Knorr RL; Lipowsky R; Dimova R
    Sci Rep; 2018 Aug; 8(1):11838. PubMed ID: 30087440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and dynamic patterning of supported lipid membranes mimicking cell membranes.
    Kaufmann S; Kumar K; Reimhult E
    Methods Mol Biol; 2011; 751():453-63. PubMed ID: 21674348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of supported lipid bilayers on indium tin oxide for dynamically-patterned membrane-functionalized microelectrode arrays.
    Kumar K; Tang CS; Rossetti FF; Textor M; Keller B; Vörös J; Reimhult E
    Lab Chip; 2009 Mar; 9(5):718-25. PubMed ID: 19224023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroformation in a flow chamber with solution exchange as a means of preparation of flaccid giant vesicles.
    Peterlin P; Arrigler V
    Colloids Surf B Biointerfaces; 2008 Jun; 64(1):77-87. PubMed ID: 18294822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrusion of electroformed giant unilamellar vesicles through track-etched membranes.
    Patil YP; Kumbhalkar MD; Jadhav S
    Chem Phys Lipids; 2012 May; 165(4):475-81. PubMed ID: 22155692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM characterization of spin-coated multilayered dry lipid films prepared from aqueous vesicle suspensions.
    Krapf L; Dezi M; Reichstein W; Köhler J; Oellerich S
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):25-32. PubMed ID: 20832257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.