These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 22424302)
21. Concerted motions networking pores and distant ferroxidase centers enable bacterioferritin function and iron traffic. Yao H; Rui H; Kumar R; Eshelman K; Lovell S; Battaile KP; Im W; Rivera M Biochemistry; 2015 Mar; 54(8):1611-27. PubMed ID: 25640193 [TBL] [Abstract][Full Text] [Related]
22. Routes of iron entry into, and exit from, the catalytic ferroxidase sites of the prokaryotic ferritin SynFtn. Bradley JM; Pullin J; Moore GR; Svistunenko DA; Hemmings AM; Le Brun NE Dalton Trans; 2020 Feb; 49(5):1545-1554. PubMed ID: 31930254 [TBL] [Abstract][Full Text] [Related]
23. Mechanism of ferrous iron binding and oxidation by ferritin from a pennate diatom. Pfaffen S; Abdulqadir R; Le Brun NE; Murphy ME J Biol Chem; 2013 May; 288(21):14917-25. PubMed ID: 23548912 [TBL] [Abstract][Full Text] [Related]
24. Redox-dependent structural changes in the Azotobacter vinelandii bacterioferritin: new insights into the ferroxidase and iron transport mechanism. Swartz L; Kuchinskas M; Li H; Poulos TL; Lanzilotta WN Biochemistry; 2006 Apr; 45(14):4421-8. PubMed ID: 16584178 [TBL] [Abstract][Full Text] [Related]
25. The high-resolution X-ray crystallographic structure of the ferritin (EcFtnA) of Escherichia coli; comparison with human H ferritin (HuHF) and the structures of the Fe(3+) and Zn(2+) derivatives. Stillman TJ; Hempstead PD; Artymiuk PJ; Andrews SC; Hudson AJ; Treffry A; Guest JR; Harrison PM J Mol Biol; 2001 Mar; 307(2):587-603. PubMed ID: 11254384 [TBL] [Abstract][Full Text] [Related]
26. Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites. Pozzi C; Di Pisa F; Lalli D; Rosa C; Theil E; Turano P; Mangani S Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):941-53. PubMed ID: 25849404 [TBL] [Abstract][Full Text] [Related]
27. Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization. Pereira AS; Small W; Krebs C; Tavares P; Edmondson DE; Theil EC; Huynh BH Biochemistry; 1998 Jul; 37(28):9871-6. PubMed ID: 9665690 [TBL] [Abstract][Full Text] [Related]
28. mu-1,2-peroxo diferric complex formation in horse spleen ferritin. A mixed H/L-subunit heteropolymer. Zhao G; Su M; Chasteen ND J Mol Biol; 2005 Sep; 352(2):467-77. PubMed ID: 16095616 [TBL] [Abstract][Full Text] [Related]
29. The crystal structure of ferritin from Chlorobium tepidum reveals a new conformation of the 4-fold channel for this protein family. Arenas-Salinas M; Townsend PD; Brito C; Marquez V; Marabolli V; Gonzalez-Nilo F; Matias C; Watt RK; López-Castro JD; Domínguez-Vera J; Pohl E; Yévenes A Biochimie; 2014 Nov; 106():39-47. PubMed ID: 25079050 [TBL] [Abstract][Full Text] [Related]
30. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement. Honarmand Ebrahimi K; Bill E; Hagedoorn PL; Hagen WR Nat Chem Biol; 2012 Nov; 8(11):941-8. PubMed ID: 23001032 [TBL] [Abstract][Full Text] [Related]
31. Insights into the effects on metal binding of the systematic substitution of five key glutamate ligands in the ferritin of Escherichia coli. Stillman TJ; Connolly PP; Latimer CL; Morland AF; Quail MA; Andrews SC; Treffry A; Guest JR; Artymiuk PJ; Harrison PM J Biol Chem; 2003 Jul; 278(28):26275-86. PubMed ID: 12730190 [TBL] [Abstract][Full Text] [Related]
32. The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans. Macedo S; Romão CV; Mitchell E; Matias PM; Liu MY; Xavier AV; LeGall J; Teixeira M; Lindley P; Carrondo MA Nat Struct Biol; 2003 Apr; 10(4):285-90. PubMed ID: 12627224 [TBL] [Abstract][Full Text] [Related]
33. Key carboxylate residues for iron transit through the prokaryotic ferritin Bradley JM; Fair J; Hemmings AM; Le Brun NE Microbiology (Reading); 2021 Nov; 167(11):. PubMed ID: 34825885 [TBL] [Abstract][Full Text] [Related]
34. Mechanisms of iron mineralization in ferritins: one size does not fit all. Bradley JM; Moore GR; Le Brun NE J Biol Inorg Chem; 2014 Aug; 19(6):775-85. PubMed ID: 24748222 [TBL] [Abstract][Full Text] [Related]
35. The universal mechanism for iron translocation to the ferroxidase site in ferritin, which is mediated by the well conserved transit site. Masuda T; Goto F; Yoshihara T; Mikami B Biochem Biophys Res Commun; 2010 Sep; 400(1):94-9. PubMed ID: 20705053 [TBL] [Abstract][Full Text] [Related]
36. Spectroscopic evidence for and characterization of a trinuclear ferroxidase center in bacterial ferritin from Desulfovibrio vulgaris Hildenborough. Pereira AS; Timóteo CG; Guilherme M; Folgosa F; Naik SG; Duarte AG; Huynh BH; Tavares P J Am Chem Soc; 2012 Jul; 134(26):10822-32. PubMed ID: 22681596 [TBL] [Abstract][Full Text] [Related]
37. Structural and thermodynamic characterization of metal ion binding in Streptococcus suis Dpr. Haikarainen T; Thanassoulas A; Stavros P; Nounesis G; Haataja S; Papageorgiou AC J Mol Biol; 2011 Jan; 405(2):448-60. PubMed ID: 21056572 [TBL] [Abstract][Full Text] [Related]
38. Mineralization in ferritin: an efficient means of iron storage. Chasteen ND; Harrison PM J Struct Biol; 1999 Jun; 126(3):182-94. PubMed ID: 10441528 [TBL] [Abstract][Full Text] [Related]
39. Facilitated diffusion of iron(II) and dioxygen substrates into human H-chain ferritin. A fluorescence and absorbance study employing the ferroxidase center substitution Y34W. Bou-Abdallah F; Zhao G; Biasiotto G; Poli M; Arosio P; Chasteen ND J Am Chem Soc; 2008 Dec; 130(52):17801-11. PubMed ID: 19055359 [TBL] [Abstract][Full Text] [Related]
40. The iron redox and hydrolysis chemistry of the ferritins. Bou-Abdallah F Biochim Biophys Acta; 2010 Aug; 1800(8):719-31. PubMed ID: 20382203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]