BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 2242431)

  • 1. Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: correlation with a release of hemin.
    Jarolim P; Lahav M; Liu SC; Palek J
    Blood; 1990 Nov; 76(10):2125-31. PubMed ID: 2242431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of methemoglobin (MetHb) formation and hemin loss in the pro-oxidant activity of fish hemoglobins.
    Maestre R; Pazos M; Medina I
    J Agric Food Chem; 2009 Aug; 57(15):7013-21. PubMed ID: 19722582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disintegration of red cell membrane cytoskeleton by hemin.
    Shaklai N; Avissar N; Rabizadeh E; Shaklai M
    Biochem Int; 1986 Sep; 13(3):467-77. PubMed ID: 3790141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosslinking of isolated cytoskeletal proteins with hemoglobin: a possible damage inflicted to the red cell membrane.
    Shaklai N; Frayman B; Fortier N; Snyder M
    Biochim Biophys Acta; 1987 Oct; 915(3):406-14. PubMed ID: 3651479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term intercalation of residual hemin in erythrocyte membranes distorts the cell.
    Solar I; Muller-Eberhard U; Shviro Y; Shaklai N
    Biochim Biophys Acta; 1991 Feb; 1062(1):51-8. PubMed ID: 1998709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells.
    Kriebardis AG; Antonelou MH; Stamoulis KE; Economou-Petersen E; Margaritis LH; Papassideri IS
    J Cell Mol Med; 2007; 11(1):148-55. PubMed ID: 17367509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of hemoglobin to methemoglobin in intact erythrocyte by a hydroperoxide induces formation of glutathionyl hemoglobin and binding of alpha-hemoglobin to membrane.
    Murakami K; Mawatari S
    Arch Biochem Biophys; 2003 Sep; 417(2):244-50. PubMed ID: 12941307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of hemin with protein 4.1 as compared to spectrin and actin.
    Solar I; Shaklai N
    Biochim Biophys Acta; 1989 Aug; 983(2):199-204. PubMed ID: 2758057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Junctional sites of erythrocyte skeletal proteins are specific targets of tert-butylhydroperoxide oxidative damage.
    Caprari P; Bozzi A; Malorni W; Bottini A; Iosi F; Santini MT; Salvati AM
    Chem Biol Interact; 1995 Mar; 94(3):243-58. PubMed ID: 7820887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemin-promoted peroxidation of red cell cytoskeletal proteins.
    Solar I; Dulitzky J; Shaklai N
    Arch Biochem Biophys; 1990 Nov; 283(1):81-9. PubMed ID: 2241176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruptured erythrocytes inhibit the oxidation of membranes by 15-hydroperoxy-eicosatetraenoic acid.
    Calzada C; Rice-Evans C
    FEBS Lett; 1993 Aug; 329(1-2):111-5. PubMed ID: 8354383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes.
    Snyder LM; Fortier NL; Leb L; McKenney J; Trainor J; Sheerin H; Mohandas N
    Biochim Biophys Acta; 1988 Jan; 937(2):229-40. PubMed ID: 3337802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid oxidation in trout muscle is strongly inhibited by a protein that specifically binds hemin released from hemoglobin.
    Cai H; Grunwald EW; Park SY; Lei B; Richards MP
    J Agric Food Chem; 2013 May; 61(17):4180-7. PubMed ID: 23570608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of membrane lipid peroxidation with oxidation of hemoglobin variants: possibly related to the rates of hemin release.
    Chiu DT; van den Berg J; Kuypers FA; Hung IJ; Wei JS; Liu TZ
    Free Radic Biol Med; 1996; 21(1):89-95. PubMed ID: 8791096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular interactions of membrane proteins and erythrocyte deformability].
    Boivin P
    Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melatonin protects human red blood cells from oxidative hemolysis: new insights into the radical-scavenging activity.
    Tesoriere L; D'Arpa D; Conti S; Giaccone V; Pintaudi AM; Livrea MA
    J Pineal Res; 1999 Sep; 27(2):95-105. PubMed ID: 10496145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of oxygen and carbon radicals in hemoglobin oxidation.
    Minetti M; Mallozzi C; Scorza G; Scott MD; Kuypers FA; Lubin BH
    Arch Biochem Biophys; 1993 Apr; 302(1):233-44. PubMed ID: 8385900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired deformability of Heinz body-forming red cells.
    Hasegawa S; Rodgers GP; Shio H; Schechter AN; Uyesaka N
    Biorheology; 1993; 30(3-4):275-86. PubMed ID: 8286728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemin-mediated dissociation of erythrocyte membrane skeletal proteins.
    Liu SC; Zhai S; Lawler J; Palek J
    J Biol Chem; 1985 Oct; 260(22):12234-9. PubMed ID: 4044594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different types of glutathionylation of hemoglobin can exist in intact erythrocytes.
    Mawatari S; Murakami K
    Arch Biochem Biophys; 2004 Jan; 421(1):108-14. PubMed ID: 14678791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.