These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22424398)

  • 1. Probing DNA-lipid membrane interactions with a lipopeptide nanopore.
    Bessonov A; Takemoto JY; Simmel FC
    ACS Nano; 2012 Apr; 6(4):3356-63. PubMed ID: 22424398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Activity of toxins produced by Pseudomonas syringae pv. syringae in model and cell membranes].
    Gur'nev FA; Kaulin IuA; Tikhomirova AV; Wangspa R; Takemoto D; Malev VV; Shchagina LV
    Tsitologiia; 2002; 44(3):296-304. PubMed ID: 12094768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Interaction between filamentous actin and lipid bilayer causes the increase of syringomycin E channel-forming activity].
    Bessonov AN; Gur'nev FA; Kuznetsova IM; Takemoto JY; Turoverov KK; Malev VV; Shchagina LV
    Tsitologiia; 2004; 46(7):628-33. PubMed ID: 15473373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Conductance of phytotoxin channels in the presence of large organic ions].
    Ostroumova OS; Efimova SS; Shchagina LV
    Tsitologiia; 2009; 51(8):670-5. PubMed ID: 19799351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Kinetic parameters of single ion channels and stationary conductivities of phytotoxin modified lipid bilayers].
    Ostroumova OS; Gur'nev FA; Takemoto JY; Shchagina LV; Malev VV
    Tsitologiia; 2005; 47(4):338-43. PubMed ID: 16706157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Transport of large organic ions through syringomycin channels in the membranes containing dipole modifiers].
    Efimova SS; Ostroumova OS; Malev VV; Shchagina LV
    Tsitologiia; 2011; 53(5):450-6. PubMed ID: 21786689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid-mediated regulation of pore-forming activity of syringomycin E by thyroid hormones and xanthene dyes.
    Efimova SS; Zakharova AA; Ismagilov AA; Schagina LV; Malev VV; Bashkirov PV; Ostroumova OS
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):691-699. PubMed ID: 29253504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingolipids influence the sensitivity of lipid bilayers to fungicide, syringomycin E.
    Kaulin YA; Takemoto JY; Schagina LV; Ostroumova OS; Wangspa R; Teeter JH; Brand JG
    J Bioenerg Biomembr; 2005 Oct; 37(5):339-48. PubMed ID: 16341778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-specific detection of individual DNA strands using engineered nanopores.
    Howorka S; Cheley S; Bayley H
    Nat Biotechnol; 2001 Jul; 19(7):636-9. PubMed ID: 11433274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopore sensors: from hybrid to abiotic systems.
    Kocer A; Tauk L; Déjardin P
    Biosens Bioelectron; 2012; 38(1):1-10. PubMed ID: 22749726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilayer-spanning DNA nanopores with voltage-switching between open and closed state.
    Seifert A; Göpfrich K; Burns JR; Fertig N; Keyser UF; Howorka S
    ACS Nano; 2015 Feb; 9(2):1117-26. PubMed ID: 25338165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syringomycin E channel: a lipidic pore stabilized by lipopeptide?
    Malev VV; Schagina LV; Gurnev PA; Takemoto JY; Nestorovich EM; Bezrukov SM
    Biophys J; 2002 Apr; 82(4):1985-94. PubMed ID: 11916856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering the activity of syringomycin E via the membrane dipole potential.
    Ostroumova OS; Malev VV; Bessonov AN; Takemoto JY; Schagina LV
    Langmuir; 2008 Apr; 24(7):2987-91. PubMed ID: 18324870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin and amphiphilic polymers influence on channel formation by Syringomycin E in lipid bilayers.
    Bessonov AN; Schagina LV; Takemoto JY; Gurnev PA; Kuznetsova IM; Turoverov KK; Malev VV
    Eur Biophys J; 2006 May; 35(5):382-92. PubMed ID: 16470378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes.
    Agner G; Kaulin YA; Gurnev PA; Szabo Z; Schagina LV; Takemoto JY; Blasko K
    Bioelectrochemistry; 2000 Dec; 52(2):161-7. PubMed ID: 11129239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes.
    Zakharova AA; Efimova SS; Malev VV; Ostroumova OS
    Sci Rep; 2019 Nov; 9(1):16034. PubMed ID: 31690786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supported lipid bilayer/carbon nanotube hybrids.
    Zhou X; Moran-Mirabal JM; Craighead HG; McEuen PL
    Nat Nanotechnol; 2007 Mar; 2(3):185-90. PubMed ID: 18654251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent synchronization of gating of syringomycin E ion channels.
    Ostroumova OS; Malev VV; Kaulin YA; Gurnev PA; Takemoto JY; Schagina LV
    FEBS Lett; 2005 Oct; 579(25):5675-9. PubMed ID: 16219309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.