BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22424929)

  • 1. The temporal sequence of the mammalian neocortical neurogenetic program drives mediolateral pattern in the chick pallium.
    Suzuki IK; Kawasaki T; Gojobori T; Hirata T
    Dev Cell; 2012 Apr; 22(4):863-70. PubMed ID: 22424929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary conservation of neocortical neurogenetic program in the mammals and birds.
    Suzuki IK; Hirata T
    Bioarchitecture; 2012; 2(4):124-9. PubMed ID: 22960728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neocortical neurogenesis is not really "neo": a new evolutionary model derived from a comparative study of chick pallial development.
    Suzuki IK; Hirata T
    Dev Growth Differ; 2013 Jan; 55(1):173-87. PubMed ID: 23230908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of Tangentially Migrating Glutamatergic Neurons in the Developing Avian Brain.
    García-Moreno F; Anderton E; Jankowska M; Begbie J; Encinas JM; Irimia M; Molnár Z
    Cell Rep; 2018 Jan; 22(1):96-109. PubMed ID: 29298437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations of telencephalic development that paved the way for neocortical evolution.
    García-Moreno F; Molnár Z
    Prog Neurobiol; 2020 Nov; 194():101865. PubMed ID: 32526253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chick pallium displays divergent expression patterns of chick orthologues of mammalian neocortical deep layer-specific genes.
    Fujita T; Aoki N; Fujita E; Matsushima T; Homma KJ; Yamaguchi S
    Sci Rep; 2019 Dec; 9(1):20400. PubMed ID: 31892722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic interneuron migration and the evolution of the neocortex.
    Tanaka DH; Nakajima K
    Dev Growth Differ; 2012 Apr; 54(3):366-72. PubMed ID: 22524606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal subtype specification in establishing mammalian neocortical circuits.
    Kumamoto T; Hanashima C
    Neurosci Res; 2014 Sep; 86():37-49. PubMed ID: 25019611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neocortical evolution: neuronal circuits arise independently of lamination.
    Karten HJ
    Curr Biol; 2013 Jan; 23(1):R12-5. PubMed ID: 23305661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subset of early radial glial progenitors that contribute to the development of callosal neurons is absent from avian brain.
    García-Moreno F; Molnár Z
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):E5058-67. PubMed ID: 26305942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A common developmental plan for neocortical gene-expressing neurons in the pallium of the domestic chicken Gallus gallus domesticus and the Chinese softshell turtle Pelodiscus sinensis.
    Suzuki IK; Hirata T
    Front Neuroanat; 2014; 8():20. PubMed ID: 24778607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engraftment and differentiation of neocortical progenitor cells transplanted to the embryonic brain in utero.
    Carletti B; Grimaldi P; Magrassi L; Rossi F
    J Neurocytol; 2004 May; 33(3):309-19. PubMed ID: 15475686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of basal progenitors in the developing non-mammalian brain.
    Nomura T; Ohtaka-Maruyama C; Yamashita W; Wakamatsu Y; Murakami Y; Calegari F; Suzuki K; Gotoh H; Ono K
    Development; 2016 Jan; 143(1):66-74. PubMed ID: 26732839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional- and temporal-dependent changes in the differentiation of Olig2 progenitors in the forebrain, and the impact on astrocyte development in the dorsal pallium.
    Ono K; Takebayashi H; Ikeda K; Furusho M; Nishizawa T; Watanabe K; Ikenaka K
    Dev Biol; 2008 Aug; 320(2):456-68. PubMed ID: 18582453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homology, neocortex, and the evolution of developmental mechanisms.
    Briscoe SD; Ragsdale CW
    Science; 2018 Oct; 362(6411):190-193. PubMed ID: 30309947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and developmental homology in amniote brains. Toward conciliating radical views of brain evolution.
    Aboitiz F
    Brain Res Bull; 2011 Feb; 84(2):125-36. PubMed ID: 21146594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Levels of homology and the problem of neocortex.
    Dugas-Ford J; Ragsdale CW
    Annu Rev Neurosci; 2015 Jul; 38():351-68. PubMed ID: 26154980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reduced progenitor pool population accounts for the rudimentary appearance of the septum, medial pallium and dorsal pallium in birds.
    Charvet CJ
    Brain Behav Evol; 2010; 76(3-4):289-300. PubMed ID: 21135539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progenitor Hyperpolarization Regulates the Sequential Generation of Neuronal Subtypes in the Developing Neocortex.
    Vitali I; Fièvre S; Telley L; Oberst P; Bariselli S; Frangeul L; Baumann N; McMahon JJ; Klingler E; Bocchi R; Kiss JZ; Bellone C; Silver DL; Jabaudon D
    Cell; 2018 Aug; 174(5):1264-1276.e15. PubMed ID: 30057116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evolution of the pallium.
    Medina L; Abellán A
    Semin Cell Dev Biol; 2009 Aug; 20(6):698-711. PubMed ID: 19393324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.