BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22425601)

  • 1. Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy.
    Creasey RG; Voelcker NH; Schultz CJ
    Biochim Biophys Acta; 2012 May; 1824(5):711-22. PubMed ID: 22425601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles.
    Toksoz S; Mammadov R; Tekinay AB; Guler MO
    J Colloid Interface Sci; 2011 Apr; 356(1):131-7. PubMed ID: 21269637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly and mineralization of genetically modifiable biological nanofibers driven by β-structure formation.
    Xu H; Cao B; George A; Mao C
    Biomacromolecules; 2011 Jun; 12(6):2193-9. PubMed ID: 21520924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silaproline helical mimetics selectively form an all-trans PPII helix.
    Martin C; Legrand B; Lebrun A; Berthomieu D; Martinez J; Cavelier F
    Chemistry; 2014 Oct; 20(44):14240-4. PubMed ID: 25212635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a Crosslinked Elastomeric-Protein Inspired Polypeptide.
    Bochicchio B; Bracalello A; Pepe A
    Chirality; 2016 Aug; 28(8):606-11. PubMed ID: 27403636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The non-covalent decoration of self-assembling protein fibers.
    Mahmoud ZN; Grundy DJ; Channon KJ; Woolfson DN
    Biomaterials; 2010 Oct; 31(29):7468-74. PubMed ID: 20638122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-specific nanofibers via self-assembly of three-branched peptide.
    Koga T; Matsui H; Matsumoto T; Higashi N
    J Colloid Interface Sci; 2011 Jun; 358(1):81-5. PubMed ID: 21429499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis.
    Luo Z; Wang S; Zhang S
    Biomaterials; 2011 Mar; 32(8):2013-20. PubMed ID: 21167593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of nanofibers with uniform morphology by self-assembly of designed peptides.
    Matsumura S; Uemura S; Mihara H
    Chemistry; 2004 Jun; 10(11):2789-94. PubMed ID: 15195309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimuli-responsive self-assembling peptides made from antibacterial peptides.
    Liu Y; Yang Y; Wang C; Zhao X
    Nanoscale; 2013 Jul; 5(14):6413-21. PubMed ID: 23739953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designer D-form self-assembling peptide nanofiber scaffolds for 3-dimensional cell cultures.
    Luo Z; Yue Y; Zhang Y; Yuan X; Gong J; Wang L; He B; Liu Z; Sun Y; Liu J; Hu M; Zheng J
    Biomaterials; 2013 Jul; 34(21):4902-13. PubMed ID: 23602368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the role of (2S,4R)-4-hydroxyproline in elastin model peptides.
    Bochicchio B; Laurita A; Heinz A; Schmelzer CE; Pepe A
    Biomacromolecules; 2013 Dec; 14(12):4278-88. PubMed ID: 24127724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The PPII-to-α-helix transition of poly-l-lysine in methanol/water solvent mixtures accompanied by fibrillar self-aggregation: An influence of fluphenazine molecules.
    Cieślik-Boczula K
    Biophys Chem; 2017 Aug; 227():14-20. PubMed ID: 28558910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.
    Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W
    Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the effect of secondary structure on molecular interactions of poly-L-lysine with different substrates by SFA.
    Binazadeh M; Faghihnejad A; Unsworth LD; Zeng H
    Biomacromolecules; 2013 Oct; 14(10):3498-508. PubMed ID: 24032485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired self-assembled peptide nanofibers with thermostable multivalent α-helices.
    Han SH; Lee MK; Lim YB
    Biomacromolecules; 2013 May; 14(5):1594-9. PubMed ID: 23550841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding self-assembled amphiphilic peptide supramolecular structures from primary structure helix propensity.
    Baumann MK; Textor M; Reimhult E
    Langmuir; 2008 Aug; 24(15):7645-7. PubMed ID: 18597507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of motif net charge and amphiphilicity on the self-assembly of functionally designer RADA16-I peptides.
    Wu D; Zhang S; Zhao Y; Ao N; Ramakrishna S; He L
    Biomed Mater; 2018 Mar; 13(3):035011. PubMed ID: 29546848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled self-assembly of amphiphilic oligopeptides into shape-specific nanoarchitectures.
    Koga T; Higuchi M; Kinoshita T; Higashi N
    Chemistry; 2006 Feb; 12(5):1360-7. PubMed ID: 16163755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release.
    Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T
    J Control Release; 2010 Mar; 142(3):354-60. PubMed ID: 19932721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.