BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22425621)

  • 1. Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate.
    Neilson KM; Klein SL; Mhaske P; Mood K; Daar IO; Moody SA
    Dev Biol; 2012 May; 365(2):363-75. PubMed ID: 22425621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates.
    Marchak A; Grant PA; Neilson KM; Datta Majumdar H; Yaklichkin S; Johnson D; Moody SA
    Dev Biol; 2017 Sep; 429(1):213-224. PubMed ID: 28663133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes.
    Klein SL; Neilson KM; Orban J; Yaklichkin S; Hoffbauer J; Mood K; Daar IO; Moody SA
    PLoS One; 2013; 8(4):e61845. PubMed ID: 23610594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On becoming neural: what the embryo can tell us about differentiating neural stem cells.
    Moody SA; Klein SL; Karpinski BA; Maynard TM; Lamantia AS
    Am J Stem Cells; 2013; 2(2):74-94. PubMed ID: 23862097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm.
    Gaur S; Mandelbaum M; Herold M; Majumdar HD; Neilson KM; Maynard TM; Mood K; Daar IO; Moody SA
    Genesis; 2016 Jun; 54(6):334-49. PubMed ID: 27092474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early neural ectodermal genes are activated by Siamois and Twin during blastula stages.
    Klein SL; Moody SA
    Genesis; 2015 May; 53(5):308-20. PubMed ID: 25892704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation.
    Yan B; Neilson KM; Moody SA
    Dev Biol; 2009 May; 329(1):80-95. PubMed ID: 19250931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foxd4 is essential for establishing neural cell fate and for neuronal differentiation.
    Sherman JH; Karpinski BA; Fralish MS; Cappuzzo JM; Dhindsa DS; Thal AG; Moody SA; LaMantia AS; Maynard TM
    Genesis; 2017 Jun; 55(6):. PubMed ID: 28316121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone.
    Gee ST; Milgram SL; Kramer KL; Conlon FL; Moody SA
    PLoS One; 2011; 6(6):e20309. PubMed ID: 21687713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor.
    Brugmann SA; Pandur PD; Kenyon KL; Pignoni F; Moody SA
    Development; 2004 Dec; 131(23):5871-81. PubMed ID: 15525662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos.
    Kumar S; Umair Z; Kumar V; Kumar S; Lee U; Kim J
    Sci Rep; 2020 Oct; 10(1):16780. PubMed ID: 33033315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt, and FGF signaling.
    Watanabe T; Kanai Y; Matsukawa S; Michiue T
    Genesis; 2015 Oct; 53(10):652-9. PubMed ID: 26249012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Notch signaling downstream of foxD5 promotes neural ectodermal transcription factors that inhibit neural differentiation.
    Yan B; Neilson KM; Moody SA
    Dev Dyn; 2009 Jun; 238(6):1358-65. PubMed ID: 19253404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction.
    Takebayashi-Suzuki K; Arita N; Murasaki E; Suzuki A
    Mech Dev; 2007; 124(11-12):840-55. PubMed ID: 17950579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing the pre-placodal region and breaking it into placodes with distinct identities.
    Saint-Jeannet JP; Moody SA
    Dev Biol; 2014 May; 389(1):13-27. PubMed ID: 24576539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus.
    Wills AE; Choi VM; Bennett MJ; Khokha MK; Harland RM
    Dev Biol; 2010 Jan; 337(2):335-50. PubMed ID: 19913009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain.
    Sullivan SA; Akers L; Moody SA
    Dev Biol; 2001 Apr; 232(2):439-57. PubMed ID: 11401404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm.
    Pieper M; Ahrens K; Rink E; Peter A; Schlosser G
    Development; 2012 Mar; 139(6):1175-87. PubMed ID: 22318231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos.
    Virgirinia RP; Jahan N; Okada M; Takebayashi-Suzuki K; Yoshida H; Nakamura M; Akao H; Yoshimoto Y; Fatchiyah F; Ueno N; Suzuki A
    Dev Growth Differ; 2019 Aug; 61(6):365-377. PubMed ID: 31270814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling.
    Hong CS; Saint-Jeannet JP
    Dev Biol; 2018 Oct; 442(1):162-172. PubMed ID: 30016640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.