These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22425621)

  • 21. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning.
    Schlosser G; Patthey C; Shimeld SM
    Dev Biol; 2014 May; 389(1):98-119. PubMed ID: 24491817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis.
    Takebayashi-Suzuki K; Kitayama A; Terasaka-Iioka C; Ueno N; Suzuki A
    Dev Biol; 2011 Dec; 360(1):11-29. PubMed ID: 21958745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation.
    Chang C; Harland RM
    Development; 2007 Nov; 134(21):3861-72. PubMed ID: 17933792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation.
    Matsuo-Takasaki M; Matsumura M; Sasai Y
    Development; 2005 Sep; 132(17):3885-94. PubMed ID: 16079156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Setting appropriate boundaries: fate, patterning and competence at the neural plate border.
    Groves AK; LaBonne C
    Dev Biol; 2014 May; 389(1):2-12. PubMed ID: 24321819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives.
    Rogers CD; Harafuji N; Archer T; Cunningham DD; Casey ES
    Mech Dev; 2009; 126(1-2):42-55. PubMed ID: 18992330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation.
    Sullivan CH; Majumdar HD; Neilson KM; Moody SA
    Dev Biol; 2019 Feb; 446(1):68-79. PubMed ID: 30529252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network.
    Yan B; Neilson KM; Moody SA
    Dev Dyn; 2010 Dec; 239(12):3467-80. PubMed ID: 21069826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FoxD3 and Grg4 physically interact to repress transcription and induce mesoderm in Xenopus.
    Yaklichkin S; Steiner AB; Lu Q; Kessler DS
    J Biol Chem; 2007 Jan; 282(4):2548-57. PubMed ID: 17138566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AP2γ regulates neural and epidermal development downstream of the BMP pathway at early stages of ectodermal patterning.
    Qiao Y; Zhu Y; Sheng N; Chen J; Tao R; Zhu Q; Zhang T; Qian C; Jing N
    Cell Res; 2012 Nov; 22(11):1546-61. PubMed ID: 22945355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNAs and ectodermal specification I. Identification of miRs and miR-targeted mRNAs in early anterior neural and epidermal ectoderm.
    Shah VV; Soibam B; Ritter RA; Benham A; Oomen J; Sater AK
    Dev Biol; 2017 Jun; 426(2):200-210. PubMed ID: 27623002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origin and segregation of cranial placodes in Xenopus laevis.
    Pieper M; Eagleson GW; Wosniok W; Schlosser G
    Dev Biol; 2011 Dec; 360(2):257-75. PubMed ID: 21989028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus.
    Néant I; Mellström B; Gonzalez P; Naranjo JR; Moreau M; Leclerc C
    Biochim Biophys Acta; 2015 Sep; 1853(9):2077-85. PubMed ID: 25499267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PV.1 suppresses the expression of FoxD5b during neural induction in Xenopus embryos.
    Yoon J; Kim JH; Kim SC; Park JB; Lee JY; Kim J
    Mol Cells; 2014 Mar; 37(3):220-5. PubMed ID: 24608799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway.
    Zhao H; Cao Y; Grunz H
    Dev Biol; 2003 May; 257(2):278-91. PubMed ID: 12729558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.
    Wu MY; Ramel MC; Howell M; Hill CS
    PLoS Biol; 2011 Feb; 9(2):e1000593. PubMed ID: 21358802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early embryonic specification of vertebrate cranial placodes.
    Schlosser G
    Wiley Interdiscip Rev Dev Biol; 2014; 3(5):349-63. PubMed ID: 25124756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm.
    Bourguignon C; Li J; Papalopulu N
    Development; 1998 Dec; 125(24):4889-900. PubMed ID: 9811573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm.
    Nordin K; LaBonne C
    Dev Cell; 2014 Nov; 31(3):374-382. PubMed ID: 25453832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis.
    Maharana SK; Schlosser G
    BMC Biol; 2018 Jul; 16(1):79. PubMed ID: 30012125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.