These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 22425639)
1. Conformational heterogeneity of the SAM-I riboswitch transcriptional ON state: a chaperone-like role for S-adenosyl methionine. Huang W; Kim J; Jha S; Aboul-Ela F J Mol Biol; 2012 May; 418(5):331-49. PubMed ID: 22425639 [TBL] [Abstract][Full Text] [Related]
2. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch. Suresh G; Srinivasan H; Nanda S; Priyakumar UD Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101 [TBL] [Abstract][Full Text] [Related]
3. Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch. Boyapati VK; Huang W; Spedale J; Aboul-Ela F RNA; 2012 Jun; 18(6):1230-43. PubMed ID: 22543867 [TBL] [Abstract][Full Text] [Related]
4. The impact of a ligand binding on strand migration in the SAM-I riboswitch. Huang W; Kim J; Jha S; Aboul-ela F PLoS Comput Biol; 2013; 9(5):e1003069. PubMed ID: 23704854 [TBL] [Abstract][Full Text] [Related]
5. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning. Wostenberg C; Ceres P; Polaski JT; Batey RT J Mol Biol; 2015 Nov; 427(22):3473-3490. PubMed ID: 26343759 [TBL] [Abstract][Full Text] [Related]
6. Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism. Dussault AM; Dubé A; Jacques F; Grondin JP; Lafontaine DA RNA; 2017 Oct; 23(10):1539-1551. PubMed ID: 28701520 [TBL] [Abstract][Full Text] [Related]
7. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. Lu C; Ding F; Chowdhury A; Pradhan V; Tomsic J; Holmes WM; Henkin TM; Ke A J Mol Biol; 2010 Dec; 404(5):803-18. PubMed ID: 20951706 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure and ligand-induced folding of the SAM/SAH riboswitch. Huang L; Liao TW; Wang J; Ha T; Lilley DMJ Nucleic Acids Res; 2020 Jul; 48(13):7545-7556. PubMed ID: 32520325 [TBL] [Abstract][Full Text] [Related]
9. Conformational capture of the SAM-II riboswitch. Haller A; Rieder U; Aigner M; Blanchard SC; Micura R Nat Chem Biol; 2011 Jun; 7(6):393-400. PubMed ID: 21532598 [TBL] [Abstract][Full Text] [Related]
10. Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level. Liao TW; Huang L; Wilson TJ; Ganser LR; Lilley DMJ; Ha T Nucleic Acids Res; 2023 Sep; 51(17):8957-8969. PubMed ID: 37522343 [TBL] [Abstract][Full Text] [Related]
11. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch. Manz C; Kobitski AY; Samanta A; Keller BG; Jäschke A; Nienhaus GU Nat Chem Biol; 2017 Nov; 13(11):1172-1178. PubMed ID: 28920931 [TBL] [Abstract][Full Text] [Related]
12. Variable sequences outside the SAM-binding core critically influence the conformational dynamics of the SAM-III/SMK box riboswitch. Lu C; Smith AM; Ding F; Chowdhury A; Henkin TM; Ke A J Mol Biol; 2011 Jun; 409(5):786-99. PubMed ID: 21549712 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Lu C; Smith AM; Fuchs RT; Ding F; Rajashankar K; Henkin TM; Ke A Nat Struct Mol Biol; 2008 Oct; 15(10):1076-83. PubMed ID: 18806797 [TBL] [Abstract][Full Text] [Related]
14. Structure-based insights into recognition and regulation of SAM-sensing riboswitches. Zheng L; Song Q; Xu X; Shen X; Li C; Li H; Chen H; Ren A Sci China Life Sci; 2023 Jan; 66(1):31-50. PubMed ID: 36459353 [TBL] [Abstract][Full Text] [Related]
15. Xiao W; Liu G; Chen T; Zhang Y; Lu C Biomolecules; 2024 Jun; 14(7):. PubMed ID: 39062457 [TBL] [Abstract][Full Text] [Related]
16. SAM-VI riboswitch structure and signature for ligand discrimination. Sun A; Gasser C; Li F; Chen H; Mair S; Krasheninina O; Micura R; Ren A Nat Commun; 2019 Dec; 10(1):5728. PubMed ID: 31844059 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of allosteric transitions in S-adenosylmethionine riboswitch are accurately predicted from the folding landscape. Lin JC; Thirumalai D J Am Chem Soc; 2013 Nov; 135(44):16641-50. PubMed ID: 24087850 [TBL] [Abstract][Full Text] [Related]
18. Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. Heppell B; Blouin S; Dussault AM; Mulhbacher J; Ennifar E; Penedo JC; Lafontaine DA Nat Chem Biol; 2011 Jun; 7(6):384-92. PubMed ID: 21532599 [TBL] [Abstract][Full Text] [Related]
19. Atomistic details of the ligand discrimination mechanism of S(MK)/SAM-III riboswitch. Priyakumar UD J Phys Chem B; 2010 Aug; 114(30):9920-5. PubMed ID: 20614931 [TBL] [Abstract][Full Text] [Related]
20. A mechanism for S-adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm. Huang W; Kim J; Jha S; Aboul-ela F Nucleic Acids Res; 2009 Oct; 37(19):6528-39. PubMed ID: 19720737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]